PG

ZHIYIS&

NAV

ZHIYISEE

10T Training Kit

20210904.V1

ZHIYISE
Directory

LesSoN 1 INStAlliNg IDE....cccoii ittt ettt e e e e 1
1.2 INErOAUCTION. .ce ittt st 1

1.2 INStalling ArdUINO.....eeeiiiieiei et 3

1.3 INStalling LiDrari@s....cceeeeiiiieee ettt 6

Lo ArAUINO ettt ettt e e e e ettt e e e e e e e 8

1.5 Introduction t0 RGB NaANO....cccueeiiiiiiriieiiiieeeiie ettt 8
LESSON 2 LIGNT LEDottt e et e e e e e e 11
2.0 OVEIVIBW . e 11

2.2 WOTKIiNG PriNCIPIE. ettt 11

2.3 ConNection desCriptioN......cooiiiiiiiieiiieeeieeeteeete et 12

2.4 Code explanation........oooieiiiiiiiii e 12

PR U] o] (oY= To I oo e [T USRS 13
Lesson 3 Button control LED.........ccooiiiiiiiiiiiiiiiiiiiieiiecceecccecec e 15
3.1 OVEIVIEW.eeeeiiitieeeee ettt e ettt e e e e s ettt e e e e e s eierreeeeeeeeseeannreneees 15

3.2 Connection desCriplioN. ..ottt 15

3.3 Code eXPlanation.......cccueeeieiiiiie e 15
LesSON 4 aCtiVe DUZZEN.........coiiiiiiiiiiiii e 17
4.1 OVEIVIBW...eeeiiiiiiiiiiteteeeteteeeeeeeeeeeeeeeeeteeeeeeeeeeeaeaeeeeaseeeeesaeeseeeseneeenennnnnnnnnnnes 17

4.2 Connection desCription........ccoocuiiiiiiiiiiiiiiiiiiiieccee e 17

4.3 Code eXplanation........cccuveieeriiiieeeieee e e 18
LESSON 5 PASSIVE DUZZEI ...t 19
5.1 OVEIVIEW. ccoiiiiiiiiiiiiiiiii 19

5.2 Connection desCription.......ccoocuiiiiiiiiiiiiiiiiiiiiiecc et 19

5.3 Code exXplanation........cc.uueeieeiiiieeeiiiee et 20
Lesson 6 Traffic LiIght.......cov i 21
5.1 OVEIVIEW...eiiiiiiiiiiiiieee ettt e ettt e e e e s et e e e e e s e snrareeeeeeeens 21

6.2 WOIKIiNG PrinCIPle. ... e ettt 21

6.3 WiIring SCheMATiC...uueeeeiieee et e 22

ZHIYISE

6.4 Code explanation........oooiiiiiiiii e 23
Lesson 7 RUnNNing water light.......cc.ueeiiiiiiiiiiiiiiiee e 25
7.1 OVEIVIEW...uuiiiiiiiiiiiiiiiiiictee ettt e e e s earea e 25

7.2 WOTKIiNg PrinCiPle. .o e et e e e 25

7.3 Wiring SChEmMAtiC...ocueeeieiiieiee et 26

7.4 Code eXPlanation.......ccueeieeeeeciiiiieee e e 26
Lesson 8 WS2812B.........ccooiiiiiiiiii 28
8.1 OVEIVIEW.ceeiiiiieeiee ettt ettt e e e e s ee e e e e e e s eerree e e e e e e s e eannreneees 28

8.2 WOrKiNg PrinCiple. oo e et 28

8.3 CharaCteriStiCS. .. ceeureeeiiieiiieeeite e e 29

8.4 WIiring SChEMALiC. ..o 30

8.5 Code exXplanation........cc.uuieieiiiiie e 30
Lesson 9 Gradient RGB..........coooiiiiiiiiiiiiiiiiicceeeeceeec e 32
9.1 OVEIVIEW.ceeeiiitieeeee ittt e e ettt et e e s et e e e e e e e s eieereeeeeeeeseeannreneees 32

9.2 WOrKiNg PrinCiPle.. ... ettt 32

9.3 WiriNg SCNEMATIC. ...vvvieeeeiiieeeeiiiee ettt e et e ettt e e e e e e s aaeeesennaaeeeenns 33

9.4 Code eXPlanation.......cccoii ittt 34
LESSON 10 DSLB07.ccieeieeeeeiiiiiieetee et ettt e e e et e e e e e s e eeeee e e e s ennrreneeas 36
10.1 OVEIVIEW.coiiiiiiiiiiiiiiiiiiei ittt e s raeeeeee e 36
10.2 LCD1602 INtrodUCtioN.ceieieieeiiieeiieeeieeeetee ettt 36
10.3 DS1307 INtroducCtioN........ccooviiiiiiiiiiiiiiiiieeceiiceceeee e 37
10.4 Wiring SChEMAtiC..ccceeeiiee e e 38
10.5 Code explanation......oocueeeiiiiiiiiieeeee e 38
.. 40
LesSON 11 ShOW TEMIP...uuiiiiiiiiiii ittt 41
L1.0 OV VIBW . e e e 41
11.2 Analog Temperature Sensor Introduction............cccceeeeiieiiiiiiiieenninnne, 41

11.3 Wiring SChEmMAtiC..ccceeeiiee et e 42

11.4 Code explanation......oooueeiiiiiiiiieeeee e 42

ZHIYISE

Lesson 12 Show temp and humi......ccoeiiiiiiiiin e 44
12,0 OVBIVIEW . e e e e e e 44

12.2 Wiring SChemMatiC....ceeiiiiiiiiiieee e 44

12.3 Code eXplanation.........coccuiieeeriiiieeeiiee et e e e e 45
Lesson 13 Ultrasonic module..........cuiiiiiiiiiiiiiiiiiiiiiiccccccecc e 47
13,0 OV VIBW . e e e e 47

13.2 Ultrasonic sensor INtroduction...........ccoccvvieiiiiiiiiniiieeiniiieeeeieeeeae 47

13.3 Wiring SChemMAtiC..ccccceevieeeciiiee et 48

13.4 Code explanation.......ooueeeiiiiiiiiieee e 48
Lesson 14 Photosensitive reSiStanCe........cccveevviiiiiieiiiiiniiienieeceee e 50
L. L OV VIBW . es 50

14.2 Component INtrodUCTION......ccvviieeeiiie et 50

14.3 Connection DIagram........oocuiriiiiiiiiiiiiiiiiiieeeee et 52
14.4 Wiring SChemMAtiC..ccceeeviee et 53

14.5 Code explanation......oooueeeiiiiiiiiieeee e 53
Lesson 15 Rotary encoder control RGB.........ccocviiiiieciiieeeeiiee e e 55
15,1 OV VIBW . e as 55

15.2 Project Wiring diagram........ccoeccuveieeeiiiiee e eereee e e e eeveeeeeeveeeas 55

15.3 Code explanation.......ocueeeiiiiiiiiieee e 55
Lesson 16 NRF24L0L IaUNCR..c...eiiiiiiiiieeeeeec et 57
16,1 OV VIBW . ees 57

16.2 Project Wiring diagram........ccoecuieieeeiiiiee e eereee e e e eereeeeeeveeeas 57

16.3 Code explanation......oocueeeiiiiiiiiiee e 57
Lesson 17 Infrared cONtrol LED...........eeiiriiiiiiiiiieiiiieeeeieeeeeeee e 60
17,0 OV VIBW . e 60

17.2 Project Wiring diagram.......cceeeeeieeieciiiiiieee e ceeeee e e e ereeeee e e e e e 60

17.3 Code explanation......cooueeeiiiiiieiiee e 61
Lesson 18 Infrared control RGB...........cccceiiiiiiiiiiiiiiiiiicceeccec e 63

1RSI A O IV =T VA=) Y PR 63

ZHIYISE

18.2 Project Wiring diagram.......cccuiiiiiiiiiiiiiieeeee ettt 63

18.3 Code eXplanation.........coccuiieeeiiiiie et 63
Lesson 19 Bluetooth control RGB.........cceeiiiiiiiiiiiiiiiiiiiiiccicceeec e 66
19,0 OVEIVIEW ittt ettt e e e ettt s e e e e et teebbae e e e e eeeeeenenanans 66

19.2 Connection desCription.........cooccuieiiiiiiiiiiiiieeieeceecc e 66

19.3 Code eXplanation.........coccuiieeeriiiie et 67

19.4 Bluetooth remote CoONrol.......ccoccuviiiiiiiiiiiiiiiiiiiiicccece 69
Lesson 20 ESP8266 Development board.........ccceevevveeeiiiiiieieeeeieeee e 71
20.2 iNErOdUCHIONeiiiiiiiiii e 71

The ESP8266 is a Wi-Fi module ideal for Internet of Things and home

automation projects. This article is a beginner's guide to the ESP8266

developmeNnt DOArd.........oooviiiie e e 71
20.2 ESP8266 SPeCifiCations......ccovuuieeiiiiiiiiiiiiee et 71
20.3 ESP8266 VEISION..ccitiiiiiiiiiiiiteeeeeeeeiieteeeeeeeeseieerereeeeeesesmrrareeeeessennans 72
20.4 NodeMCU pin arrangement peripherals.........ccccccooviiiiiniiiiiiininieennn. 73
20.5 What pins are used in NODEMCU ESP82667?........ccceevvveecneiieieeeeeeennnns 73

Lesson 21 Installing the ESP8266 development board in the Arduino IDE.......... 75
21.1 Install the ESP8266 plug-in in the Arduino IDE...........cceovviiieiininieennnns 75
21.2 Test the installation.......ccccuviiiiiiiiiiii e, 78
21.3 WiriNg Diagrami.. e ettt e ettt e e e e et eebtnee e e e eeeeeeennaas 80

Lesson 22 ESP8266 NodeMCU WiFi control traffic light module.............c.......... 81
22.1 Asynchronous NetWOrk SEIVEr........cueiivveeecciiiiieeee et 81
22.2 Schematic Diagramii.. ..o uiiiiiiiiiieieiiiec et 82
22.3 WiriNG Diagram.. . e e 83
22.4 ESP asynchronous Web server code.........cccceiviiiiiiiiiiiiiiiiiiiiiicceeeen, 85
22.5 HOW the code WOIKS.....coouiiiiiiiiiiieeeteceeeeeee e 90

Lesson 23 ESP8266 Node MCU button control LED............cccoeviiiiiniiiieennnnneen. 101
23.1 ESP8266 NodeMCU controls digital output..........cceovvieeiiniiieeennnnee. 101

23.2 Project @Xample... ..o 101

ZHIYISE

23.3 WIring diagramii.....ccooiiiiiiiiiici it 102
23,4 WOrKing COUE:..ueiiiiiiiieiiiieeeeeee et e 102
23D ettt ettt e e ettt et e e e e et eanenraeas 103
23.6 UPload COUE......iiiiiiiiiiieeiiee et 105
23.7 ObjJect diagrami.. ..ottt 105
Lesson 24 ESP8266 Controlling LED Brightness (PWM)......ccoovieeiiniiieeennneeenn. 106
24.1 ESP8266 NOAEMCU PWM......ccoiiiiiiiiiiniiiiniieeniieeeeeeeee e 106
24.2 Schematic diagrami.......coiuieeiiie ettt 108
24.3 UPload COUE:....oiiiiiiiiiiiiiceecc e 110
24.4 WiriNg Diagrami:... o ceeeeeeeeeeiieeieetee ettt et ste et eseeeeteesateebeeseeas 110

25. 1 WOrKiNg COO@:..ueiiiiiiiieiiiieeeeeee ettt e 112
25.2 Code working prinCiple:.....ccccuiiiiiieiiiiiiiiiececc e 116
25.3 BUild @ WED PAgE..cueeeiiieeee e 117
25.4 Web Server DEMO.......ccoouiiiiiiiiiiiiiiiceetee e 125
Lesson 26 ESP8266 controls WS2812 lights via Blinker...........cceovviiiiiiniieeenns 126
26.1 Arduino configUration........cccccveiiiiiiiiiiiiiiiiiiiec e 126
26.2 WOrKiNg COU: . uiiiiiiiiiiieeiiee ettt 128
26.3 App Connection Configuration..........ccecueeeviieiniieiniiciniicceceeee 134
26.4 The WIring diagram....ccooouiieeiiiieiieeiiee ettt 139

Lesson 27 ESP8266 Nodemcu displays temperature and humidity in combination

1T 1 o 1= 1T P PUPRRRN 140
27.1 DHT 11 SENSOI:uuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiee bbb aaebesesasaaaaes 140

27.2 Install the Library.. e 141
27.3Working code explanation:.........ccoocuiiiiiiiiiiiiiiiiieiiiiccecceee 141

27. 4 Wiring Diagram.. . e 144

Lesson 28 ESP8266 Nodem combined with HC-SR04 Ultrasonic Ranging......... 148

28.1 URrasoniC tranSAUCETceeeruriieiiiiiee ettt e 148

28.2 WiriNG DIagrami.....cccceiiiiiiiiiiieieiiiiiiictee et 149

ZHIY IS8

Lesson 1 Installing IDE

1.1 Introduction

The Arduino Integrated Development Environment (IDE) is the software side of
the Arduino platform.

In this lesson, you will learn how to setup your computer to use Arduino and
how to set about the lessons that follow.

The Arduino software that you will use to program your Arduino is available for
Windows, Mac and Linux. The installation process is different for all three platforms
and unfortunately there is a certain amount of manual work to install the software.

STEP 1: Go to https://www.arduino.cc/en/software.

DOWNLOAD OPTIONS
Ardl.“no |DE 1-8-13 Windows win 7 and newer

Windows ziP file

Windows app Win8g.10r10 Get .

The open-source Arduino Software (IDE) makes it easy to write code

and upload it to the board. This software can be used with any Linux 32bits

Arduino board. Linux 64 bits
Linux ARM 32 bits

Refer to the Getting Started page for Installation instructions. Linux ARM 64 bits

SOURCE CODE Mac OS X 10.10 or newer
Active development of the Arduino software is hosted by GitHub. Release Notes
See the instructions for building the code. Latest release source Checksums (sha512)

code archives are available here. The archives are PGP-signed so
they can be verified using this gpg key.

The version available at this website is usually the latest version, and the actual

version may be newer than the version in the picture.

1/152

A

ZHIY IS8

STEP2 : Download the development software that is compatible with the

operating system of your computer. Take Windows as an example here.
DOWNLOAD OPTIONS

Windows Win 7 and newer
Windows zIP file

Windows app Win8.10r 10 Get B4

Linux 32 bits
Linux 64 bits
Linux ARM 32 bits
Linux ARM 64 bits

Mac OS X 10.10 or newer

Release Notes
Checksums (sha512)

Click Windows Installer.

Contribute to the Arduino Software

Consider supporting the Arduino Software by contributing to its development. (US tax payers, please note this
contribution is not tax deductible). Learn more on how your contributio

will be used.

SINCE MARCH 2015, THE ARDUINC IDE HAS BEEN DOWNLOADED [ERBEElREE]
TIMES. (IMPRESSIVE!) NO LONGER JUST FOR ARDUINO AND GENUINO

BOARDS , HUNDREDS OF COMPANIES AROUND THE WORLD ARE USING THE IDE
TO PROGRAM THEIR DEVICES, INCLUDING COMPATIBLES, CLONES, AND EVEN

COUNTERFEITS. HELP ACCELERATE ITS DEVELOPMENT WITH A SMALL

CONTRIBUTION! REMEMBER: OPEN SOURCE IS LOVE!

$3 $5 $10 $25 S50 OTHER

JUST DOWNLOAD CONTRIBUTE & DOWNLOAD

Click JUST DOWNLOAD.
Also version 1.8.9is available in the material we provided, and the versions of

our materials are the latest versions when this course was made.

2/152

ZHIY IS8

1.2 Installing Arduino

Bl arduino-1.8.13-windows

€9 Arduino Setup: License Agreement =

]

W% Please review the license agreement before installing Arduino, If you
20 accept all terms of the agreement, dick I Agree.,

GMU LESSER. GENERAL PLBLIC LICEMSE ~
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <htip:/ffsf.org/=

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This wersion of the GMLU Lesser General Public License incorporates the terms

and conditions of version 3 of the GNU General Public License, supplemented
by the additional permissions listed below.

Cancel | Mullsoft Tnstall Systen »3.0 | I Agree II

P Check the components you want to install and unchedk the components
.0 you don't want to install. Click Next to continue.,

Install Arduino software
Install USE driver

Create Start Menu shortout
Create Desktop shortout
Associate .ino files

Select components to install;

Space reguired: 535.4MB

Cancel | Mullsaft Install Syskem v3.0 < Back

Mext = II

3/152

WAV
ZHIYISBE

Click Next

I@ Arduino Setup: Installation Folder - »

folder, dick Browse and select another folder, Click Install to start the

.:: Setup will install Arduing in the following folder. To install in a different
installation.

IC:\Program Files {(x86)\Arduina Browse... |

"Desﬁnatiun Folder

Space reguired: 535.4MB
Space available: 57.4GE

Cancel I Mullsaft Install System v3.0 < Badk Install

You can press Browse... to choose an installation path or directly type in the

directory you want.

Click Install to initiate installation.

€D Arduino Setup: Installing —
Extract: avrdude. conf
0.0 —
Show details |

Cancel I Mullsaft Install System 3.0 = Back Close

4/152

ZHIYISE

Finally, the following interface appears, click Install to finish the installation.

[+-| Windows Security lﬁ

Would you like to install this device software?

Mame: Arduino USE Driver
Publisher: ArcBotics LLC.

Always trust software from "ArcBotics LLC.". Install l [Don't Install]

'@' You should only install driver software from publishers you trust. How canl
decide which device software is safe to install?

Next, the following icon appears on the desktop.

(©.0)
Al

Double-click to enter the desired development environment.

File Edit Sketch Tools Help

sketch_novl 3a

2 |void setup()
3/

4| pinMode {13, 0UTPUT);

Write (13, LOW);
11 (500);

Arduino rogramming P

5/152

Installing Arduino (Mac OS X)

Download and Unzip the zip file, double click the Arduino.app to enter Arduino
IDE; the system will ask you to install Java runtime library if you don’t have it in your
computer. Once the installation is complete you can run the Arduino IDE.

Installing Arduino (Linux)

You will have to use the make install command. If you are using the Ubuntu
system, it is recommended to install Arduino IDE from the software center of
Ubuntu.

Installing Additional Arduino Libraries.Once you are comfortable with the
Arduino software and using the built-in functions, you may want to extend the ability

of your Arduino with additional libraries.

1.3 Installing Libraries

Libraries are a collection of code that makes it easy for you to connect to a
sensor, display, module, etc. For example, the built-in Liquid Crystal library makes it
easy to talk to character LCD displays. There are hundreds of additional libraries
available on the Internet for download. The built-in libraries and some of these
additional libraries are listed in the reference. To use the additional libraries, you will
need to install them.

How to Install a Library?Using the Library Manager.To install a new library into
your Arduino IDE you can use the Library Manager (available from IDE version 1.8.9).
Open the IDE and click to the "Sketch" menu and then Include Library > Manage

Libraries.

6/152

File Edit [Sketch Tools Help
Verify/Compile Ctrl+R

Upload Ctrl+U 7

sketeh | Upload Using Programmer Ctrl+Shift+U Manage Libraries... Ctrl+Shift+I

Export compiled Binary Ctrl+Alt+S

void

// ladd .ziP Library... |

..

Show Sketch Folder Ctrl +K
| Include Library | X
Add File...

Arduino libraries

Bridge
L EEPROM
void loop() | Esplora

// put your main code here, to run Ethamer

Firmata

} G5M
HID
Keyboard
LiquidCrystal
Mouse
Robot Control
Robot IR Remote

Robot Motor
sD

SPI

Servo

SoftwareSerial

and then Include Library > Manage Libraries.

FLORA
= & HC-SR04

PC-201608131 I; IRremote
PC-20190402} e

PC-20190509¢ =l SimpleDHT
TAYLOR2019

USER-201508

USER-201701

USER-201703

USER-201708

USER-EO].?OB-!

USER-201803/

USER-201804

KB

RERERRRORRR R R R

|

Example: IRromote

Open Arduino software - project - load library - add a .zip library.

Add method two:

Copy the library folder to the Libraries folder in the Arduino installation

directory. Restart Arduino and the added library will take effect.

7/152

1.4 Arduino

Arduino is an open source electronic platform based on easy-to-use hardware
and software.Suitable for anyone working on interactive projects. Usually, an Arduino
project consists of circuits and codes.

The Arduino board is a circuit board that integrat es a microcont roller, input
and out put interfaces, etc.The Arduino board can use sensor s t o sense the
environment and receive user operations to control LED s,, and so on. We just need
to assemble the circuit and write the code.Currently,t here are several models of
Arduino development boards, and the codes between different types of
development boards are common (due to different hardware, some development

boards may not be fully compatible). Popular main control boards include.

1.5 Introduction to RGB Nano

The 14 digital ports of RGB Nano can be used as digital input or output, defined
by pinmode() in the program, and controlled by digitalwrite and digitalread()
function blocks. They work at 5V. Each port provides output current or receives 40
mA current. There is a pull-up resistor inside with a resistance value of 20-50 kOhmes.
Other terminals have special definitions.

Serial: 0 (Rx) and 1 (TX). Used to receive (Rx) and transmit (TX) TTL serial data.

External interrupt: terminals 2 and 3. These external interfaces can be
configured to generate interrupts later, can be triggered when an external low level
occurs, or when a rising edge and a falling edge occur. For more information, see the
attachinterrupt() function.

PWM: 3, 5, 6, 9, 10, 11, provide 8-bit PWM output, use the analogwrite()
function.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI
communication. Although the hardware supports them, they are not included in the

Arduino software.

Led: 2-13, built-in LED, connected to pin 2-13, when this pin outputs high

8/152

A

ZHIYI%5E

voltage, the LED is on, when outputting low voltage, the LED is off.

button: 2, is a built-in button, connected to pin 2, this pin can be used as a
pull-up input, when the software is configured, it can detect whether the button is
pressed.

buzzer: 8 is the built-in pin, connected to pin 8. A passive buzzer module is
connected to this pin. When this pin outputs a frequency level, the buzzer can make
a different sound.

RGB: 13 is a built-in pin, connect to pin 13, this pin integrates WS2812RGB light,
you can use software configuration to make it emit different colors

RGB Nano has eight analog inputs, each with a resolution of 10 bits (ie 1024
different possibilities). By default, the measured voltage to ground is 5V. Of course,
its upper limit can also be modified by the analogreference() function. Analog pins 6
and 7 cannot be used as digital ports. In addition, some ports have many special
functions.

I12C: A4 (SDA) and A5 (SCL). There are other ports on the board.

Aref: Reference voltage of analog input, used with ananlogreference().

Reset: Pull down the potential and reset the microprocessor. After pressing the

button, the whole system can be reset.

Water lamp module WS2812 RGB light

ININEENEED . =
Hllrus'h”ﬂ? ricterd If
: g

#& 1H !“i{..
24 bt LA § B
SHEDEmEs 3 “—
6] RESRT —8UTTON-"" 14445519 ®

‘II o . L

D13 3V3 RI FAQ A1 AZ /3 A4 A5 AB A7 5V RSTGVIN

Hil“lt

Reset button Touch switch

Passive buzzer

9/152

SAY

ZHIYISBE

EITR/NANO]

W52812B RGB

Control Passive Buzzer

[
[pcviz)f TXD || PD1 JEFT——®) BS | o——flVIlJ) The input voltage to the board when
t t i L
reoss[R0 |/ P JET—@® B T« Mot e bus power. o
[penimiaRESET]| PC6 |FE——e z“ e = = &——FL]/ PC6 | [RESET) [cnmsa]
ED)—o & THHIT d —— I8
[ecovmas(INTE)[PD2 JER——®) &3 = = U = Oggm22l "7
(0C28]lpeovris] INTZ]/ PD3 B\ @ B = iRl ©— DA ["46 |
[XCK Jlecvrzel]_T0 | PD4 /EF——® [] Y @) —FT)/ PC5 v ADES)| SCL | 195 ::;
(0ceB)frcmzy)[T1 j/ PD5 B\ @ [E -" ||""- =8 @——FFj/ PC4 ez [ADEA)| SDA | 1844 [~ Jserial Pin
[0CeA]jrenvr22]|AING)/ PDE JETE-N\ @ B . 3 =Y @——F3/ PC3 vy [ADES] 1743 S Avalog Pin
renra3| ATNT PO7 EE—@ L R :%I LY @——F5/ PC2 | frcvrio)[ADED [control
[IcP1]/reme)[CLKO)/ PBO [FF—@ 1™ =TT S @£/ Pl | rcvrs | (ADET) 15 A1 [
[renr1]OCIA/ PE EEF\ @ RS =i=E I S ©@—FF)/ Pca) rcvrs | ADEG 1446, B rryvical pin
[35 J/ecowrz]j0C1B)/ PB2 T\ @ R i N o—F7/AREF (= Jport pin
[MOST)/ Pemnrz || OC2 || PB3 jm_f\r’ = - - 2 ._m - j'PJﬂ function
~ CO e - O . L /Interrupt Pin
[MISO)/pcovrs | PB4 JTT—@ 5 -8 @ ——£// P85 /s SCKIET P o
=

@@ rort power@

Flowing LED Lights

m The power sum for each pin’s
&' group should not exceed 188mA

AAb.s_Qlui;e MAX per pin 46mA
recommended 20mA

MAX 200mA . s
® or entire package Analog exclusively Pins

www b cor

©.99)

1 AUG 214

10/152

Lesson 2 Light LED

2.1 Overview

Through this project, you can learn how to use RGB Nano to light up a 10mm
LED module. After downloading the program and connecting the line, you will see
that the LED light is successfully lit. If it is not lit, you need to check whether the line
is correctly connected and check whether the pin number of the connected micro

controller corresponds to it.

2.2 working principle

LED (Light Emitting Diode), which converts electrical energy into light energy,
also has unidirectional conductivity and a reverse breakdown voltage of about 5V. Its
forward volt-ampere characteristic curve is very steep, and the current-limiting
resistor must be connected in series. In a 5V circuit, a resistor of about 400 ohms is
generally used. The longer of the two pins of the LED is the positive pole. There are
two ways to connect, when the positive pole of the led through the current limiting
resistor and Arduino.The I/O port is connected and the other end is grounded. At this
time, when the Arduino output is high, the led is lit, and when the output is low, the
led is off.

When the negative pole of the led is connected to the I/O port of the Arduino,
the other end is connected to the 5V voltage through the current limiting+ resistor.
At this time.

When the output is low, the led is lit, and when the output is high, the led is off.

11/152

If you do not use a resistor with an LED, then it may well be destroyed almost
immediately, as too much current will flow through, heating it and destroying the
'jlunction’ where the light is produced.

There are two ways to tell which is the positive lead of the LED and which the
negative.

Firstly, the positive lead is longer.

Secondly, where the negative lead enters the body of the LED, there is a flat
edge to the case of the LED.

If you happen to have an LED that has a flat side next to the longer lead, you

should assume that the longer lead is positive.

2.3 Connection description

Use the dupont line to lead the D13 pin of the micro controller to any interface
of the JP12 header, plug it in, and the line is successfully connected.The wiring

diagram is as follows.

10T learning kit

2.4 Code explanation

Define LED signal enable pin.

12/152

A

ZHIY IS8

#define LED 13 //Define output pin

Function initialization, define 13 pin as output.

vold setup() {
// put your setup code here, to run once:
pinMode (LED, OUTPUT) ;
digitalWrite(LED , LOW), //Initialization,

Main function, let 13 pin output high level.

void loop () {
// put your main code here, to run repeatedly:
/*Since the negative pole of our LED pin has been
connected, we only need to use the control pin of
Arduino to output the high level, which is the positive
pole, and the LED will be 1lit */
digitalWrite(LED ,HIGH) ;

2.5 Upload code

Choose NANO development board.

@ project2 | Arduinc 1.8.13 -] x

Fle edit sketch| Tools Heip | |
Auto Format Ctrl+T

project2 Fix Encoding & Reload

#defiDE Manage Libraries... Ctrl+Shift+1 Deflne Output pln it
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

void s¢ WiFi101 / WiFiININA Firmware Updater tialization

{ 2 I Board: "Arduino Nano® Is Boards Manager... | 3
Pracessor: "ATmegas28P Arduino AVR Boards Arduino Yin
Port: "COM33" ESPIZ Arduing Arduino Uno

pinM Get Board Info he output AR S
Programmer: "AVRISP mkll® > 4 . Arduino Nano J
Taumo Mega or Mega

Burn Bootloader
Arduino Mega ADK

Arduino Leonardo
Arduino Leonardo ETH
Arduino Micro

Arduino Esplora

void loop() //Principal function Arduiino Mini
{ Arduino Ethernet
Arduino Fio
Arduino BT
AiaitalWrite (T.EN HTGHY = //The antrnt Lo Ut cCTrocy

13/152

ZHIYISE

Select port.

& project? | Arduino 1.8.13

_File Edit Sketch__@_He_lP

: i 4 Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

praject?

Manage Libraries... Ctrl+Shift+1
" Serial Monitor Ctrl+Shift+M . 3 "
.
VO ld S€ Serial Plotter Ctrl+Shift+L lall zation
{ WIFi101 / WiFININA Firmware Updater
[
Board: "Arduino Nano" 5|
|
p j_flM . Processor: "ATmega328P' L4 f""':"tﬂllt
| Port: "COM33" Ser@ ports
1 GerBoaTa TS I comsz I
} Programmer: "AVRISP mkll" 3| 2
Burn Bootloader

Click compile.

@ project2 | Arduine 1.8.13

dit Sketch Tools Help

project2

void setup () S/Function initialization

{

pinMode (LED, OUTPUT; //Define output

Click upload.

@ project2 | Arduino 1.8.13 = [} X
Eilf:: Edit ;ketch Tools ﬂelp

project2

void setup () //Function initialization

{

pinMode(LED,OUTPUTI; //Define output

14/152

ZHIYISES

Lesson 3 Button control LED

3.1 Overview

Through this project, you can learn how to use the input of the RGB Nano
control button to light up a 10mm LED light. After downloading the program and
connecting the line, you need to press the WS1 button. After pressing it, you will see
the LED light is successfully lit. After pressing it again, the LED light will go out. If it is
not lit and extinguished, you need to check whether the circuit is correctly connected

7

and check whether the pin number of the connected microcontroller corresponds to

it.

3.2 Connection description

Use DuPont wire to lead the D13 pin of the single-chip microcomputer to any
interface of the JP12 header, plug it in and the connection is successful, connect the
D2 pin of the single-chip microcomputer to the S port on the header JP1, and the

button wiring is also completed.The wiring diagram is as follows.

| == 1nd

~ e D L A IOT learning kit

3.3 Code explanation

15/152

Define LED signal enable pin.

$define LED 13
$define button 2

Define global variables, which are used as flag bits for buttons and LEDs, function

initialization, define 13 pin as output, and define 2 pin as input State.

#define LED 13
#define button 2

int key ok=0; //Define the data wvariables required by the project
int LED en=0;
void setup() {

// put your setup code here, to run once:

pinMode (button,INPUT); //Define pin port work type

pinMode (LED,QUTPUT) ;

The main function is to judge whether the button is pressed, after pressing it, judge
whether it has been pressed according to the flag bit, and determine whether the

LED is lit or extinguished according to the flag bit.

void loop() {
// put your main code here, to run repeatedly:
//Determine whether there is a button pressed, read the button level
if (digitalRead(button))
{
if(key ok) //Determine whether the button is pressed
{
key ok = 0;
if (LED en)LED en=0; //Determine whether the last flag bit is established
else LED en = 1;
}
}
else
{
delay(20); //Delayed debounce
if('digitalRead (button)) key ok = 1;
}

//When a button is pressed, the pin port status is reversed
if (LED en) digitalWrite (LED,HIGH) ;
else digitalWrite (LED,LOW);

16/152

Lesson 4 active buzzer

4.1 Overview

Through this project, you can learn how to use RGB Nano to make the active
buzzer sound an alarm. After downloading the program and connecting the line, you
will hear an alarm sound from the buzzer. If the buzzer does not sound, you need to
check whether the circuit is correctly connected, and check whether the pin number

of the connected micro controller corresponds to it.

4.2 Connection description

Connect the D3 pin of the single-chip microcomputer to the S interface of the
JP7 row seat with a Dupont cable, and the connection is successful when it is plugged

in.The wiring diagram is as follows

EEEENEEE N EEEEEE

K

10T learning kit

17/152

4.3 Code explanation

Definition Active buzzer signal enable pin is the third pin.
fdefine Buzzer 3

The function is initialized, and pin 3 is defined as output.

volid setup() {
// put your setup code here, to run once:
pinMode (Buzzer,OUTPUT) ;

}

The main function allows the micro controller to output a high level of 500MS and

then a low level of 500MS, so that the active buzzer can sound an alarm.

void loop() {
// put your main code here, to run repeatedly:
digitalWrite(Buzzer,HIGH) ;
delay(200) ;
digitalWrite (Buzzer,LOW) ;
delay (500) ;

18/152

Lesson 5 passive buzzer

5.1 Overview

Through this project, you can learn how to use RGB Nano to make a passive
buzzer sound an alarm. You can hear the sound after downloading the program. This

is emitted by the passive buzzer, which is emitted once every 0.5S.

5.2 Connection description

No wiring is required in this lesson, because the passive buzzer has been
integrated on the RGB Nano, and the corresponding pin of the passive buzzer is pin
D8. If there is no sound when downloading the program, check whether there is a
swing switch above the buzzer Turn on, this swing switch is the connection switch
between the D8 pin and the passive buzzer, here you need to pay attention!The

wiring diagram is as follows.

‘ | BEEP1

[+

Q1

R1
1kQ

RGB-NANO

19/152

5.3 Code explanation

Define the passive buzzer signal enable pin as the D8 pin.
fdefine Buzzer 8

A global flag is defined, and the function is initialized at the same time, and pin
8 is defined as an output.
$define Buzzer 8
int beep bit=0;
void setup() {

// put your setup code here, to run once:
pinMode (Buzzer,OUTPUT) ;

The main function is to make the single-chip microcomputer output a level
frequency, which can make the passive buzzer sound. After a period of time, the
passive buzzer can make an alarm sound. If you want to make the passive buzzer
sound all the time , You can make the "beep_bit" variable always wait for 0.

void loop() {
// put your main code here, to run repeatedly:
if (beep bit == 0)
{

for{int i=0;i<=3000;i4++) //Let the pin send high and low levels at a frequency

{
digitalWrite(Buzzer, HIGH) ;
delayMicroseconds (100) ;
digitalWrite (Buzzer,LOW) ;
delayMicroseconds (100) ;
}
}
delay(500); //Let the sound last for a while, then turn it off
if (beep_bit)beep bit=0(;
else beep bit=l;

20/152

ZHIY IS8

Lesson 6 Traffic Light

6.1 Overview

Above, we have completed the control experiment of a single small light. Next,
let's do a slightly more complex traffic light experiment. In fact, smart friends can see
that this experiment is to expand the experiment of a single small light into 3

colors,which can achieve our simulation of the traffic light experiment.

6.2 working principle

Signal light is an important part of traffic signal, and it is the basic language of

road traffic.

ghts

The traffic signal light consists of a red light (indicating no passage), a green light

(indicating permission to pass) and a yellow light (indicating a warning).

It is divided into: motor vehicle signal light, non-motor vehicle signal light,
pedestrian crossing signal light, lane signal light, direction indicator signal light,
flashing warning signal light, road and railway plane crossing signal light.

Road traffic signal lamp is a category of traffic safety products, is to strengthen
the road traffic management, reduce the occurrence of traffic accidents, improve the
efficiency of road use, improve traffic conditions of an important tool.

It is suitable for crossing, T-word and other intersections. It is controlled by road
traffic signal control machine to guide the safe and orderly passage of vehicles and

pedestrians.

21/152

A

Ve

ZHIYISBE

6.3 Wiring schematic

10T learning kit

22/152

ZHIYISE

6.4 Code explanation

Set the number 2,3,4 ports to output mode as they are connected to the LED

positive terminal.

void setup() {
// put your setup code here, to run once:
pinMode (2 ,0UTPUT) ;// green light
pinMode (3,0UTPUT) ;// Yellow light
pinMode (4 ,0UTPUT) ;//red light

Set digital pin 2 to high and the rest to low with a delay of 5 seconds, leaving the

green light on for 5 seconds.

void loop() {
// put vour main code here, to run repeatedly:
digitalWrite(2,HIGH);// Open the green light
digitalWrite (3,LOW);// Close the yellow light
digitalWrite(4,LOW);//Close th red light
delay (5000);//Let the green light go on for five seconds

The green light flashes every 500 milliseconds for a total of three times

//The green light flashes every 500 milliseconds
digitalWrite (2, HIGH) ;
delay (500} ;
digitalWrite (2, LOW) ;
delay (500} ;
digitalWrite (2, HIGH) ;
delay(500);
digitalWrite (2, LOW) ;
delay (500} ;
digitalWrite (2, HIGH) ;
delay (500} ;

23/152

A

ZHIY IS8

Turn on the yellow light and turn off the red and green light for 1 second.Then the
red light goes on for five seconds.

//¥ellow light for one second
digitalWrite {2, LOW) ;
digitalWrite (3, HIGH) ;
digitalWrite {4, LOW) ;

delay (1000} ;

//The red light is on for five seconds
digitalWrite {2, LOW) ;
digitalWrite {3, LOW) ;

digitalWrite (4,HIGH) ;

delay (5000} ;

The red light flashes three times every 500 milliseconds.

//The red light blinks every 500 milliseconds
digitalWrite {4, HIGH) ;
delay (500} ;
digitalWrite{4,LOW);
delay (500} ;
digitalWrite {4, HIGH) ;
delay (500} ;
digitalWrite{4,LOW);
delay (500} ;
digitalWrite (4, HIGH);
delay (500} ;

24/152

A

ZHIYI%5E

Lesson 7 Running water light

7.1 Overview

In this course, you will learn how to control the led on and off to achieve the

flow light function.
7.2 working principle

mall light on RGB-Nano, and can realize the function of light on, off and flashing,
and the LED flashing time is set by itself.

When the pin output is low, the LED light will not be lit, when the pin output is
high, the LED light will be lit.

Multiple pin controls are required, so digital pins 2 through 13 are used here.

Control the light on and off time respectively, you can achieve the effect of
water lamp.

Running water light effect: all the lights go out, and then lit one by one to the
left, to carry out one by one to the right and faster at the beginning, as the change of
time, more and more slow, to reach the slowest time flow will become soon, this

process is circular, of course can also be other effects, can be set for yourself.

Water lamp module WS2812 RGB light

| E]IIUIEIIIIEII . o
(IR N v f

, H }& "! 1134 i":

B “t::-nl!: A
ﬁ RESRT summ IYTITIT

ll DpCOM -E[ﬂg-

D13 3V3R| FAD A1 A2 + 3 A4 A5 AB A7 5V RSTGVIN _

1!5111”

e
-

Reset button Touch switch

Passive buzzer

25/152

ZHIYISE

7.3 Wiring schematic

4 LED*12
g _ Red (633nm) I\/’j

R*12 &4
2200 =

V)
RGB-nano ‘ m I E’I !

L]
=
V4

7.4 Code explanation

Define two time variables, and then set pins 2 through 13 to output mode.
int timel=0,time2=0; //Define two time summations

void setup()

{
// Initialize the LED lamp pins, pin 2 to pin 13
for (int 14 = 2; 1. <= 13; 4++)
{
pinMode (i ,OUTPUT) ; // Set to output mode
digitalWrite(i, LOW); // Set the default level to low
}
}

From the second light on for a period of time, then off for a period of time.
Turn on the third light, wait a while, turn off the third light, then turn on the fourth

light, and so on.

26/152

void loop()

{

for fank i = &7 4 €= A37 34+%)

{

timel++;//It keeps adding up
digitalWrite (12, HIGH) :;

digitalWrite (i, HIGH) ;

delay(timel) ; //The duration of a high level

digitalWrite (i, LOW) ;
delay(timel) ; //The duration of a low level

if(timel == 100) timel = 0;//Clear when the count reaches 100
Serial.print ("LED") ;
Serial.println(i) ;

From the 13th light on, wait for a period of time to turn off the 13th light, let the

twelfth light on, wait for a period of time, turn off the second light, continue to light

and turn off the next light.

for {(int 4= 13; 1 = 2; d==)

{

timeZ++;

digitalWrite(Z, HIGH) ;

digitalWrite(i, HIGH) ;

delay(timel); //The duration of a high level

digitalWrite(i, LOW) ;
delay(timel); //The duration of a low level

if(time?2 == 100) timeZ2 = 0;

Serial.print ("LED") ;
Serial i.println (i) ;

27/152

Lesson 8 WS2812B

8.1 Overview

WS2812B is a chip with a built-in LED driver. One 10 port can control multiple

LEDs, brightness adjustment, color adjustment and other functions.

8.2 working principle

WS2812B is an intelligent external controlled LED light source integrating control
circuit and luminous circuit.

The shape is the same as a 5050 LED lamp bead, and each element is a pixel
point.

The pixel contains an intelligent digital interface data latch signal shaping
amplifier drive circuit, also contains a high-precision internal oscillator and 5V voltage
programmable fixed current control part, effectively ensure the pixel light color
highly consistent.

The data protocol adopts the communication mode of single-line return to zero
code. After the pixel is powered on and reset, the DIN end accepts the data
transmitted from the controller. The first sent 24bit data is extracted by the first pixel
and sent to the data latch inside the pixel.

After internal shaping and circuit shaping, the remaining data is amplified and
forwarded to the next cascaded pixel through the DO port. Every transmission of a
pixel, the signal is reduced by 24bit.

Automatic shaping and forwarding technology is adopted for pixels, so that the
number of cascaded pixels is not limited by signal transmission, but only limited by
signal transmission speed.

RGB is integrated on the development board, and the control pin of the RGB

light is connected to pin 13 of the RGB-Nano board.

28/152

8.3 Characteristics

1. The control circuit and RGB chip are integrated in a 5050 package component,
forming a complete external control pixel point.

2. Built-in signal shaping circuit, any pixel after receiving the signal through the
waveform .

3.Type output, ensure that the line waveform distortion will not accumulate.

4. Built-in power on reset and power off reset circuit.

5. The three primary colors of each pixel can achieve 256-level brightness
display, complete the full true color display of 16777216 colors, and the scanning
frequency is not less than 400Hz/s.

6. Serial level connection port, through a signal line to complete the data
reception and decoding.

7. Any two-point transmission distance does not need to increase any circuit
when it is less than 5 meters.

8. When the refresh rate is 30 frames/SEC, the cascade number of low speed
mode is not less than 512 points, and high speed mode is not less than 1024 points.
Data transmission speed up to 800Kbps.

9.The color of the light is highly consistent and cost-effective.

29/152

8.4 Wiring schematic

TITTN

gl

* =4 00000000000

CEEEER

(o)(e)(e)

IENEEEEEN EEEEEE

. . (oo
IOT learning kit - _

8.5 Code explanation

Reference to the library that drives the WS2812B RGB light, because the RGB
light signal pin is connected to the development board processor pin 13, so the math

pin 13 definition is connected to the RGB signal pin.

#include <Adafruit NeoPixel.h>

// Which pin on the Arduino is connected to the NeoPixels?
#define PIN 13 // On Trinket or Gemma, suggest changing this to 1

// How many NeoPixels are attached to the Arduino?
#define NUMPIXELS 12 // Popular NeoPixel ring size

// When setting up the NeoPixel library, we tell it how many pixels,
// and which pin to use to send signals. Note that for older NeoPixel
// strips you might need to change the third parameter —- see the

// strandtest example for more information on possible wvalues.
Adafruit NeoPixel pixels(NUMPIXELS, PIN, NEC GRB + NEO KHZB800) ;

#define DELAYVAL 500 // Time (in milliseconds) to pause between pixels

Some Settings need to be initialized, such as the baud rate of the serial port is set to

9600 and the RGB light function is initialized.

30/152

ZHIY IS8

void setup()

{
Serial.begin(9600) ;
pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
Serial.println("Initialization completed!"):;

}

Call the clear function first, and in the for loop, turn the first light on and set the

color to green.

Because we have 12 lights, so we're going through 12 cycles.

void loop()

{
pixels.clear(): // Set all pixel colors to 'off'

// The first NeoPixel in a strand is #0, second is 1, all the way up

// to the count of pixels minus one.

for(int i=0; i<NUMPIXELS; i++) { // For each pixel...
// pixels.Color() takes RGB values, from 0,0,0 up to 255,255,255
// Here we're using a moderately bright green color:
pixels.setPixelColor({i-1, pixels.Color(0, 0, 0}));
pixels.setPixelColor(i, pixels.Color(0, 150, 0));:

pixels.show() ; // Send the updated pixel colors to the hardware.

delay(DELAYVAL) ; // Pause before next pass through loop

31/152

&

ZHIYISBE

Lesson 9 Gradient RGB

9.1 Overview

WS2812B is a built-in LED driver chip.In this course, you will learn how to
control multiple leds, brightness adjustment, color adjustment, and other functions

from one 10 port.

9.2 Working principle

WS2812B is an intelligent external controlled LED light source integrating control
circuit and luminous circuit.
The shape is the same as a 5050 LED lamp bead, and each element is a pixel

point.

RGBEL REAZ RGB3 i
M (] o
Mgt homndl g

RGBS RGBEE RiES RGBS

Cé Cla Clip—
. EF.LE § PV
C

8 oemz &

4]
&

:-r:-s REBIO T RGEL1
E. FI.

3 —L

WS2812 ci4 C15 Cl6 7

The pixel contains an intelligent digital interface data latch signal shaping
amplifier drive circuit, also contains a high-precision internal oscillator and 5V voltage
programmable fixed current control part, effectively ensure the pixel light color
highly consistent.

The data protocol adopts the communication mode of single-line return to zero
code. After the pixel is powered on and reset, the DIN end accepts the data
transmitted from the controller. The first sent 24bit data is extracted by the first pixel
and sent to the data latch inside the pixel.

After internal shaping and circuit shaping, the remaining data is amplified and
forwarded to the next cascaded pixel through the DO port. Every transmission of a

pixel, the signal is reduced by 24bit.

32/152

X
ZHIYISE
Automatic shaping and forwarding technology is adopted for pixels, so that the

number of cascaded pixels is not limited by signal transmission, but only limited by

signal transmission speed.

RGB is integrated on the development board, and the control pin of the RGB
light is connected to pin 13 of the RGB-Nano board.

9.3 Wiring schematic

TITTN

o
+4100000000000"

10T learning kit

33/152

A

ZHIYISE

9.4 Code explanation

Reference to the library that drives the WS2812B RGB light, because the RGB
light signal pin is connected to the development board processor pin 13, so the math
pin 13 definition is connected to the RGB signal pin.Since there are 12 lights, the

number of all leds is set to 12 in the program.

#include <Adafruit NeoPixel.h>
$#ifdef AVR

#include <a§§/power.h> // Required for 16 MHz Bdafruit Trinket

// Which pin on the Arduino is connected to the NeoPixels?
// On a Trinket or Gemma we suggest changing this to 1:
#define LED PIN 13

// How many NeoPixels are attached to the Arduino?
#define LED COUNT 12

// Declare our NeoPixel strip object:

Adafruit_NeoPixel Strip{LED_COUNT, LED PIN, NEC_GRB + NEO KHEB0OD);

Do some initial setup.

vold setup() {
// These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
// Bny other board, you can remove this part (but no harm leaving it):

#if defined(AVR ATtiny85) && (F _CPU == 16000000)
clock prescale set(clock div 1);
fendif

// END of Trinket-specific code.
strip.begin() ; // INITIALIZE NeoPixel strip object (REQUIRED)

strip.show() ; // Turn OFF all pixels ASAP
strip.setBrightness(50); // Set BRIGHTNESS to about 1/5 (max = 255)

Call the rainbow function with a parameter of 2 milliseconds, which represents the

time delay for each gradient, and call the RGB function after the gradient ends.

void loop() {

// Flowing rainbow cycle along the whole strip

34/152

A

ZHIYISBE

void RGB(int num,int time)
{
// The first NeoPixel in a strand is #0, second is 1, all the way up
// to the count of pixels minus one.
strip.clear(); // Set all pixel colors to 'off'
for(int i=0; i<LED COUNT; i++) { // For each pixel...
// pixels.Color() takes RGB values, from 0,0,0 up to 255,255,255
// Here we're using a moderately bright green color:

strip.setPixelcolor(i-1, strip.Color(0, 0, 0));
for (int j = 0; j < 255; j++)
{
if (num == 1)
{
strip.setPixelColor(i, strip.Color(j, 0, 0));
}
else if (num == 2)
{
strip.setPixelColor (i, strip.Color(0, j, 0));
}
else if (num == 3)
{
strip.setPixelColor(i, strip.Color(0, 0, J));
}
}
strip.show() ; // Send the updated pixel colors to the hardware.

delay(time); // Pause before next pass through loop
}

// Rainbow cycle along whole strip. Pass delay time (in ms) between frames.
void rainbow(int wait) {
// Hue of first pixel runs 5 complete loops through the color wheel.
// Color wheel has a range of 65536 but it's OK if we roll over, so
// just count from 0 to 5*%*65536. Adding 256 to firstPixelHue each time
// means we'll make 5*€5536/256 = 1280 passes through this outer loop:

for(long firstPixelHue = 0; firstPixelHue < 5*c553¢c; firstPixelHue += 25¢) {

for(int i=0; i<strip.numPixels(); i++) { // For each pixel in strip...

// Offset pixel hue by an amount to make one full revolution of the
// color wheel (range of €5536) along the length of the strip

// (strip.numPixels() steps):

int pixelHue = firstPixelHue + (1 * €553¢L / strip.numPixels());

// strip.ColorHSV() can take 1 or 3 arguments: a hue (0 to 65535) or
// opticnally add saturation and wvalue (brightness) (each 0 to 255).
// Here we're using just the single-argument hue variant. The result
// 15 passed through strip.gamma32() to provide 'truer' colors

// before assigning to each pixel:

strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)))

}
strip.show() ; // Update strip with new contents

delay(wait); // Pause for a moment

35/152

Lesson 10 DS1307

10.1 Overview

In many electronic devices, operations must be run according to time.

When the main system is down, you should not stop calculating the time and
date for devices such as computers, mobile phones, etc.

Therefore, the real-time clock (RTC) module is adopted.

In this section, you will learn how to use the RTC DS1307 module and the

RGB-Nano development board to make a time prompter displayed by the LCD screen.

10.2 LCD1602 Introduction

ok kA

‘ }I e L
& vSSVDDVO RS RW E - DODI D2 DA D4 DS DE DY A K

Introduction to the pins of LCD1602:

VSS: A pin that connects to ground.

VDD: A pin that connects to a +5V power supply.

VO: A pin that adjust the contrast of LCD1602.

RS: A register select pin that controls where in the LCD’s memory you are writing
data to. You can select either the data register, which holds what goes on the screen,
or an instruction register, which is where the LCD’s controller looks for instructions
on what to do next.

R/W: A Read/Write pin that selects reading mode or writing mode

E: An enabling pin that, when supplied with low-level energy, causes the LDC
module to execute relevant instructions.

DO-D7: Pins that read and write data.

A and K: Pins that control the LED backlight.

36/152

10.3 DS1307 Introduction

DS1307 is a low power, with 56 bytes of non-volatile RAM full BCD code clock
calendar real-time clock chip, address and data transmission through a two-wire
bidirectional serial bus, the chip can provide seconds, minutes, hours and other
information, the days of each month can be automatically adjusted.It also has leap
year compensation.

The Real Time Clock, or RTC, is a system that tracks the current Time and can be
used with any device that needs to maintain an accurate Time.

You can also track the exact time without using an RTC system, but RTC has
some important advantages.

Here are some of them:

Release system time from time calculations (this feature is critical because in
many cases the CPU is performing delicate tasks such as receiving sensor data.

If you do not use RTC, the CPU must also track time and it may interrupt the
processor main task.

RTCS usually have a backup power supply, use CR2025 button batteries, so they
can continue for a period of time when the main power supply is off or
unavailable.RTC usually uses a 32.768khz crystal oscillator.But why 32,768? 32,768 is
2 to the 15th, so you can easily generate 1 second.In addition, the crystal must be
small, moderate width, low power consumption, 32876 Hz can meet the
requirements.

The higher the frequency, the weaker the crystal, and the lower the frequency,

the greater the power consumption.

37/152

10.4 Wiring schematic

2021/9/30 week : 4
14 ;

mmm.i.

S [Junn
]

EN NI I

EEEEEEEE) EEERULE

K

10T learning kit

10.5 Code explanation

Declare some drive LCD display and DS1307 clock chip library, call these
libraries .is our programming more simple and convenient, define the LCD display
and development board connected pins, are digital port 7,8,9,10,11,12 pins.

(Note: When uploading the code, first change the existing code
"DS1307_Write.ino" to correspond to the local time. After uploading the code,
upload the code "DS1307_ Write.ino" successfully, and then upload the code

"DS1307.ino0" successfully After uploading, the normal local time will be displayed.)

#include <LiquidCrystal.h>
#include <Wire.h>

// initialize the library with the numbers of the interface pins

LigquidCrystal lcdi{7, 8, 9; 10, 11; 12);
#define ADDRESS DS1307 0x68

Before the program starts to run, you need to set some initialization Settings, the

baud rate of the serial port, the initialization of the display.

38/152

vold setup()

{
Wire.begin() ;
Serial.begin(cc00) ;
led.begin(le,2) ;
led.clear() ;

}

Call the function of DS1307,You need to write the date into DS1307 and then read
the data.

void DS1307()

{
//read the time
Wire.beginTransmission (ADDRESS DS1307) ;
Wire.write(0x00) ;
Wire.endTransmission() ;
Wire.requestFrom(ADDRESS DS1307, 7);
if (Wire.available() >= 7)

{
for {(int 1 = 07 1< T; A4t)
{
timeBcd[e=-i] = Wire.read() ;
}
}

Print the date and time in the serial port.

//print

Serial .print {"20"); Serial .print(timeBcd[{0], HEX); Serial.print{"/");

Serial .print{timeBcd[1], HEX); Serial.print{"/"); Serial .print{timeBcd[2Z], HEX):;
Serial .print{" "); Serial .print (BcdToDay{timeBcd[3])); Serial.print(" "):;
Serial.print {timeBcd[4], HEX); Serial.print(":"):

Serial.print({timeBcd[5], HEX); Serial.print(":"):

Serial.print (timeBcd[&], HEX); Serial.println();

39/152

A

ZHIY IS8

lcd.
lcd.
lcd.
lcd.
led-
lcd.
led.
Tizd..
lcd.
lcd.
lcd.
lcd
led:
lcd.
led.
lcd

lcd.
lcd.
lcd.
led-
lcd.
led.
Tizd..
lcd.
lcd.
lcd.

setCursor {0, 0);
print{"20") ;
setCursor{2, 0);

print {timeBcd[0],

setCursor{4, 0);
print{”/") ;
setCursor (5, 0);

print (timeBed[1],

setCursor{7, 0);:
print{" /)
setCursor {3, 0);

.print (timeBcd[Z2],

setCursor (10, 0);
print {"weesk:") ;
setCursor{l5, 0);

.print {timeBcd[3],

setCursor{0, 1);

print {timeBcd[4],

setCursor(z, 1);
print{"="}):
setCursor{3, 1);

print (timeBcd[5],

setCursor {5, 1);
printl™:=");
setCursor{6, 1);

print {timeBcd[&],

HEX) ;

HEX) ;

HEX) ;

HEX) ;

HEX) ;

HEX) ;

HEX) ;

// Convert binary coded decimal to day
String BcdToDay({byte wval)

{

String res;
switch (wval)

{

Ccase
case
Ccase
case
case
Case
case

}

return res;

(O Y S T Y e |

res
res
res

res =

res
res

: res =
default: res =

"Sundav"; break;

"Tuesday";

"Wednesday";

"Thursday"”;
=
"Saturday";
1l-|_|—.._,..._,.o.._. L

r i r

40/152

londay"; break;

break;
break;
break;

Friday"; break;

break;

Lesson 11 Show temp

11.1 Overview

In this lesson, you will learn how to use the LCD 1602 display to display
temperature information.

The display is back lit by leds and can display two lines of up to 16 characters
each.

You can see the rectangles of each character and the pixels that make up each
character on the monitor.

The monitor is blue and white and is used to display text.

In this lesson, we will run the LCD library's RGB-Nano board temperature display

routine.

11.2 Analog Temperature Sensor Introduction

A thermistor is a type of resistor whose resistance is dependent on temperature,
more so than in standard resistors. The word is a portmanteau of thermal and
resistor. Thermistors are widely used as inrush current limiter, temperature sensors
(NTC type typically), self- resetting overcurrent protectors, and self-regulating
heating elements.

Specification:

Model No: NTC-MF52 3950
3Pin
Temperature Range : ~55°C~+125C
Accuracy :+/-0.5C

Pull-up resistor : 10KQ

41/152

PIN CONFIGURATION:
1. “S”: GND
2. “+” :+5V

3. “”:Singal pin

11.3 Wiring schematic

O] [Ty

T

i
am 1118 w

e D @ IOT learning kit

11.4 Code explanation

Call LCD display library, define analog interface AO to connect analog
temperature sensor. Define the pins that connect the LCD display to the

development board as digital ports 7, 8, 9, 10, 11, 12.

42/152

ZHIY IS8

#include <LiquidCrystal.h>
#include <Wire.h>

int NTCFin = A0;

#define SERIESRESISTOR 10000
#tdefine NOMINAL RESISTANCE 10000
#define NOMINAL TEMPERATURE 25
#define BCOEFFICIENT 3950

//Do the initial setup
Liquidcrystal lecd(7, 8, 9, 10, 11, 12):;//1LecD pin

The serial port baud rate is set to 9600, and the LCD screen is initialized.

void setup()

{
Serial .begin(%c00) ;
Wire.begin() ;
lcd.begin(if, 2) ; // Initialize LCD1602
led.clear () ;// Clear the ILCD screen
}

The simulated data of the simulated temperature sensor is obtained and displayed

on the serial port debugging window and LCD screen after calculation.

void loop ()
{
float ADCvalue;
float Resistance;
ADCvalue = analogRead(NTCPin) ;
Resistance = (1023 / ADCvalue) - 1;
Resistance = SERIESRESISTOR / Resistance;

float steinhart;

float templ;

steinhart = Resistance / NOMINAL RESISTANCE; // (R/Ro)
steinhart = log(steinhart); // 1ln(R/Ro)

steinhart /= BCOEFFICIENT; // 1/B * 1n(R/Ro)

steinhart -= 1.0 / (NOMINAL TEMPERATURE + 273.15); // + (1/To)

steinhart = 1.0 / steinhart; // Invert

steinhart += 273.15; // conwvert to C

templ = steinhart-(steinhart*Z2) ;//Turn negative numbers into positive numbers
Serial.print ("Temperature: ");:// temperature

Serial.print(templ) ;

Serial.println("” C ");

//Set LCD start display pointer position, 0 column 0 row

lcd.setCurscx (0, 0);

lcd.print{"temp: ™) ;

lcd.setCursori{5, 0);

lcd.print (templ) ; //Display temperature data
delay{1000) ;

43/152

Lesson 12 Show temp and humi

12.1 Overview

In this lesson, you will learn how to connect and use a display screen to display
data measured by a temperature and humidity sensor.

The display has LED backlighting and can display two lines of up to 16 characters
each.

You can see the rectangles of each character and the pixels that make up each
character on the monitor.

The display is blue and white and is used to display text.

In this lesson, we will run the LCD library's RGB-Nano sample program for

measuring temperature and humidity.

12.2 Wiring schematic

S
[

WI=

IOT learning kit

44/152

12.3 Code explanation

Invoke the library of the T/H sensor (DHT11) and LCD display and define the
processor number 2 to connect to the T/H sensor.define the LCD display and

development board connected pins, are digital port 7,8,9,10,11,12 pins.

#include <DHT.h>
#include <LiquidCrystal.h>
#include <Wire.h>

//Define the pins

#define DHTPIN 2

//Define the type, DHT1ll or whatever
#define DHTTYPE DHTI11

//Do the initial setup

DHT dht (DHTPIN, DHTTYPE) ;

LignidCrystal led{7, 8, 9, 10, 11, 12):

The serial port baud rate is set to 9600, the DHT11 sensor is initialized, and the

LCD screen is initialized.

void setup()

{
Serial .begin(9600) ;
dht.begin(); //DHT Start to work}
Wire.begin() ;
lcd.begin(l6,2);
led.clear () ;
}

45/152

ZHIY IS8

Obtain the humidity and temperature data of the sensor and display them in real

time on the serial port debugging window and LCD screen.

void loop()

{
// It takes a few seconds between tests,
//and this sensor is a little slow.
delay(500) ;
// It takes 250 milliseconds to read temperature or humidity
float h = dht.readHumidity() ;//Read the humidity
float t = dht.readTemperature() ;//Read temperature, default is Celsius
Serial.print ("Humidity: ");//humidity
Serial.println(h) ;
Serial.print ("Temperature: ");// temperature
Serial.print(t);
Serial.println(™ C ");
//Set LCD start display pointer position, 0 column 0 row
Tcd.setCursor {0, Q) ;
led.print ("temp:") ;
lcd.setCursor (s, 0);
lcd.print (t) ;//Display temperature data
//5et LCD start display pointer position, 0 column 1 row
led.setCurser{d; 1) ;
led.print ("humi:=") ;
Tcd.zsetCursor{5; 1) ;
Ted.print(h)
}

46/152

Lesson 13 Ultrasonic module

13.1 Overview

In this lesson, you will learn how to connect and use ultrasonic ranging sensors
and LCD 1602 displays.

The display has LED backlighting and can display two lines of up to 16 characters
each.

You can see the rectangles of each character and the pixels that make up each
character on the monitor.

The display is blue and white and is used to display text.

In this lesson, we will run the RGB-Nano sample program to display the

ultrasonic sensor measurement distance information on the LCD 1602 display.

13.2 Ultrasonic sensor Introduction

Ultrasonic sensor module HC-SR04 provides 2cm-400cm non-contact
measurement function, the ranging accuracy can reach to 3mm. The modules
includes ultrasonic transmitters, receiver and control circuit. The basic principle of
work:

Using 10 trigger for at least 10us high level signal,

The Module automatically sends eight 40 kHz and detect whether there is a
pulse signal back.

IF the signal back, through high level , time of high output 10 duration is the
time from sending ultrasonic tore turning.

Test distance = (high level time x velocity of sound (340m/s) /2.

You only need to supply a short 10us pulse to the trigger input to start the
ranging, and then the module will send out an 8 cycle burst of ultrasound at 40 kHz
and raise its echo. The Echo is a distance object that is pulse width and the range in
proportion You can calculate the range through the time interval between

sending trigger signal and receiving echo signal. Formula: us / 58 = centimeters or us

47/152

/ 148 =inch; or: the range = high level time * velocity (340M/S) / 2; we suggest to use

over 60ms measurement cycle, in order to prevent trigger signal to the echo

signal.

13.3 Wiring schematic

L-Z. \ %/
| == 11t X
i CCD.. 10T learning kit

The data measured by the ultrasonic sensor module HC-SR04 is processed by

the RGB-Nano board, and the data is displayed on the LCD screen.
13.4 Code explanation

Declaration drives LCD screen library, ultrasonic sensor module HC-SR04

interface.

#include <LiquidCrystal.h>
#include <Wire.h>

f/ehco:D3 trig:D2
tdefine Trig 2
#define FEcho 3

LiquidCeystal lodi{7, 84 9, 10, 11, 12); //LCD pin

48/152

&

ZHIYISBE

Initialize the serial port and screen, and set theultrasonic sensor module

HC-SR04 interface .
volid setup()

{

Serial.begin(9600) ;

Wire.begin() :

led.begin(lée,2); // Initialize LCD1602

led.clear () :; // Clear the ILCD screen

pinMode (Trig,OUTPUT) ; //Set Tring pin to output

pinMode (Echo, INPUT) ; //Set the Echo pin as input
}

Obtain the data measured by the ultrasonic sensor module HC-SR04 and display
it in the serial debugging window and LCD screen.

void loop()
{

int dis = GetDistance() ;//Assign ultrasonic data to dis
Serial.print(dis);
Serial.print("cm") ;
Serial.println();
//Set LCD start display pointer position, 0 column 0 row
lcd.setCursor (0, 0):;
lcd.print(dis) ;//Display range data
if(dis<10){
led.setCursor(l, 0);:
led.print{" ");:
}else if((dis>%) && (dis< 00)){
lcd.setCursor(2, 0):
led.prink (™ ")
}
lcd.setCursor (5, 0):;
led.print("cm:") ;
delay(200) ;
}

float GetDistance() //Read ultrasconic sensor data
{

float distance;

digitalWrite(Trig, LOW) ;

delayMicroseconds (2) ;

digitalWrite(Trig, HIGH) ;

delayMicroseconds (10) ;

digitalWrite(Trig, LOW):;

distance = pulseln(Echo, HIGH) / 58.00;

return distance;

49/152

Lesson 14 Photosensitive resistance

14.1 Overview

Photoinductive resistance, is the use of semiconductor photoelectric effect made
of a resistance value with the intensity of the incident light and change the resistor;

When the incident light is strong, the resistance goes down, when the incident
light is weak, the resistance goes up.

Photosensitive resistors are commonly used for light measurement, light control

and photoelectric conversion (to convert light changes into electrical changes).

14.2 Component Introduction

Photosensitive resistors can be widely used in a variety of light control circuits,
such as light control, regulation and other occasions, can also be used for light
control switches.

In this experiment, we first carried out a relatively simple use experiment of
photosensitive resistance.

Since photosensitive resistor is a component that can change the resistance
value according to the light intensity, it also needs the analog port to read the analog
value naturally. In this experiment, we can learn from the PWM interface experiment
and change the potentiometer into a photosensitive resistor to realize that the
brightness of the LED small lamp will also change accordingly when the light intensity
is different.

The resistance of photosensitive resistors is very high in dark and dark
conditions.

The stronger the light, the smaller the resistance.

50/152

X
ZHIY IS8
By measuring the voltage change on both sides of the photosensitive resistor,

the change of the photosensitive resistance value can be known and the illumination
intensity value can be obtained.
In the connection diagram, we can find a partial voltage resistor in series for the

photosensitive resistor.

———ANN NWW———
R1 RL

_ -

\!
bV
In the figure above, RL is a photosensitive resistor, and R1 is a series resistor. In
the dark, RL is going to be very, very large, so Vout is going to be very large, close to

5V.

The formula is as follows:

Vout = RL Vi
out =—— 7 VI

As soon as the light hits, the value of RL decreases rapidly, so Vout decreases with it.

It can be seen from the above formula that the selection of R1 should not be

too small, preferably around 1K ~ 10K, otherwise the ratio will not change

significantly.

51/152

VA
V /4

ZHIYISBE

14.3 Connection Diagram

%% R2 = =
10kQ] RESET BTk
m— REE D12/MIS0 o
— D6 e R1
RGB-NANO . -
A —
w i
DO
T LED1

Red (633nm)
— ¥

52/152

14.4 Wiring schematic

H

| ==t X 000
=~ e D (N 10T learning kit |

14.5 Code explanation

Define the photoresistor to connect to analog pin AO and the LED to connect to
digital pin 4.
int inputValue = 0;
//Define the pins

#define RES Pin A0 //AO0 Connect the photoresistor
$define LED Pin 4 //D4 Connect the LED pins

When the photoresistor detects that the light is dim, it puts the LED light is on,

so set the pin connecting the LED light to output mode.

void setup()
{

Serial.begin (9c00) ;
pinMode (LED Pin, OUTPUT) ;

53/152

Use the analog reading function to read the data of the photosensitive resistor,
and then take this data as the judgment condition of day and night. If the detected
data is less than 500, it indicates that the current environment has become dark, so

let the pin connected to the LED output high level, and make the LED light up

void loop()

{
//Read the photosensitive resistance wvalue
inputValue = analogRead(RES Pin) ;
Serial.print("Value=");
Serial.println(inputValue) ;
//When the light is low, turn on the light
if (inputValue < 500)
{
digitalWrite (LED Pin, HIGH) ;
}
else //When the light is bright, turn off the light
{
digitalWrite (LED Pin, LOW) ;
}
}

54/152

ZHIYISBE

Lesson 15 Rotary encoder control RGB

15.1 Overview

Through this project, you can learn to use a rotary encoder to control the RGB
display running light on the micro controller RGB Nano.

Connection description:

Connect the D13 pin of the single-chip microcomputer to the DIN interface of
the JP15 row with a DuPont cable, and the connection is successful when it is
plugged in. Next, connect the D2 pin of the micro controller to the "CLK" of the JP13
row seat with a Dupont line, connect the D3 pin to the "DT" of the JP3 row seat, and

connect the D4 pin to the "SW" of the JP13 row seat. You can connect successfully.

15.2 Project wiring diagram

EEEEEEEE EEEEEE G

K

10T learning kit

15.3 Code explanation

Contains RGB library files, defines the number of RGB lights and pin numbers,

and defines the function pins and the global variables required by the function.

55/152

$include <Adafruit NeoPixel.h>

fdefine NUMPIXELS 12 // Wumber of 2812 lamps
fdefine RGB PIN 13 // 2812 pin definition
//Define the pin connection

int CLE = 2;//CLE->D2

int DT = 2;//DT->D3

int SW = 4;//SwW->D4

const int interrupt0 = §;//Interrupt 0 on pin 2
int count = 0;//Define the count

int lastCLE = 0;//CLK initial wvalue

Adafruit NeoPixel pixels (NUMPIXELS, RGB PIN, NEC GRB + NEOC KHZ800) ;//Creating light objects

At the same time, the function is initialized, the work type of the pin

determined, and the interrupt 1 function is enabled at the same time.

void setup()

{
pinMode (SW, INPUT_PULLUP};
pinMode (CLK, INPUT_PULLUP);
pinMode (DT, INPUT PULLUP) ;
pixels.begin(); // Initialize 2812 library functions
pixels.show() ;
pixels.clear(); // Lighting function
attachInterrupt (interrupt0, ClockChanged, CHANGE) ;//Set the interrupt 0 handler,
Serial.begin(%600) ;
}

The main function, the value sent by the encoder through the display function to

make the corresponding RGB light be lit. By changing the "count" you can change the

light that is lit

void loop()

{
if {count<=7) count=_0;
if (count>=12) count=1Z;

if (!digitalRead(SW)) //Read the button press and the count wvalus to 0 when the counter reset

{
count = 0;
}
//Light up the corresponding RGB light
//Change the "count" wariable to change the corresponding light
pixels.setPixelColor (count, pixels.Color(l, 255, 0));
pixels.show() ;
pixels.clear(); // Lighting function
attachInterrupt (interrupt0, ClockChanged, CHANGE) ;

}

The encoder processing function will determine whether the encoder is rotating

forward or backward, and at the same time change the value of "count".

void ClockChanged()

{
if(digitalRead(sSwW)) //Judgment is not pressed
{
int clkValue = digitalRead(CLK) ;//Read the CLK pin level
int dtValue = digitalRead(DT);//Read the DT pin level
if (lastCLK != clkValue)
{
lastCLE = clkValue;
count += {(clkValue I!= dtValue ? 1 : -1);//CLK and inconsistent DT + 1, otherwise - 1
Serial.print("count:") ;
Serial.println{count); //Serial print rotation value
}
}
}

56/152

Lesson 16 NRF24L01 launch

16.1 Overview

Through this project, you will learn to use NRF24L01 to send data and display it
using the serial port of the IDE compiler.

Connection description:

Connect the D9, D10, D11, D12, and D13 pins of the MCU to the "CSN", "CE"
"MOSI" "MISO" "SCK" on the header below JP3 with DuPont cables, and connect the
NRF24L01 module to the JP3 row at the same time Mother, the connection is

complete, the connection is successful.

16.2 Project wiring diagram

10T learning kit

16.3 Code explanation

Contains the library files that the project must use.

57/152

$include <SPI.h>
#include "nRF24L01.01H"
$include "RFZ4.h"

The function pins of the program are defined in the global variable definition
f/Initial RF24 (cePin, csnPi)
RFZ4 radio(9,10);

//This is the transmission channel code we are about to establish
//11To be consistent with another module
const uinté4 t pipe = OXEBESFOFOELILL;

//Data to be transferred
int data = 0;

Initialize the function to determine that the working baud rate is "57600". This

needs to be the same as the baud rate of the serial port, otherwise garbled

characters will be generated.

void setup(void) {
Serial.begin(576€00);
//Boot chip
radio.begin() ;
//Open write channel
radio.openWritingPipe (pipe) ;

The serial port continuously prints the sent data "data" to download the
program. After connecting the DuPont cable, you can open the debugging window of
the IDE to view it. Pay special attention to setting the baud rate. The default baud

rate is 9600 and needs to be changed to 57600.

void loop (void)

{
Serial.print("Sending:");
Serial.print(data);

bool ok = radio.write(&data,sizeof(int));

if (ok)
Serial.printin(".....successed");
else
Serial.printin{(™.....failed™);
data++; //Add 1 every 200ms
delay(Z00) ;

58/152

ZHIYIEE
Experimental phenomena.
@ coms mi bt
I } § =
Sendingzl.. ... failed :
Sending:2. .. .- failed
Sernding 3. - - « - failed
Sefidingid...as failed
Sending:ib.ecuas failed
Sending:6..:.: failed
Sending:l.:---- failed
Sending:8..... failed
Sending:9..... failed
Sending:10..... failed
Sending:ll.. ... failed
Setiding 2. .00 failed
Sendingil3. s failed
Sendingild...q: failed
Sending i lo: - c-: failed

<

59/152

Lesson 17 Infrared control LED

17.1 Overview

Through this project, you will learn to use an infrared remote control to
remotely turn on the LED. After downloading the program, connect the DuPont cable
and press the remote control's play button to turn the LED on and off.

Connection description:

Connect D2 of the single-chip microcomputer to pin "S" of JP16 with a DuPont

cable, and connect D13 to any pin of JP12, and the connection is successful.

17.2 Project wiring diagram

10T learning kit

60/152

17.3 Code explanation

The initialization of the function and the function pin definition of the function
have been discussed in the previous lessons, but they are all the same, so | won’ t
describe them here. | will mainly talk about the infrared processing function. When
the infrared receiving function receives the key value, it will judge. This key value can
be printed through the serial port and viewed in the serial debugger. When the key
value we specified is judged, we define the state of the LED to be inverted, so that

the LED can be turned on and off.

#include "IRremote.h"
#define HW 2
#define LED 13
int BIT LED=0;
IRrecv irrecwv (HW) ;
decode results results;
[void setup() {
// put your setup code here; to run once:
irrecv.enableIRIn() ;
Serial.begin(%600) ;
pinMode (LED, OUTPUT) ;

i}

void loop() {
// put your main code here, to run repeatedly:
if (irrecv.decode (&results)) // have we received an IR signal?
[{
translateIR() ;
Serial.println(results.value,HEX);
irrecv.resume(); // receive the next wvalue

}

61/152

void translateIR() // takes action based on IR code received
{
if(results.value==0xFFAE57) //Determine the receiwved key wvalue as an
{
if (BIT LED)BIT LED=0;
else BIT LED=1;
if (BIT LED)digitalWrite(LED, HIGH); //Invert the state of the LED
else digitalWrite(LED, LOW);
//delay (50) ;

The button in the red box of the remote control has been set with the specified

function in the program.

62/152

Lesson 18 Infrared control RGB

18.1 Overview

Through this project, you will learn to use an infrared remote control to turn on
RGB remotely. After downloading the program, connect the DuPont cable and press
1, 2, 3, 4, 5, and 6 on the remote control to display five colors of red, green, blue,
yellow, white, and the last one is to turn off RGB.

Connection description:

Connect D2 of the single-chip microcomputer to the pin "S" of JP16 with a
Dupont wire, and connect D13 to the "DIN" pin of JP15, and the connection is

successful.

18.2 Project wiring diagram

P

mim NIIE

= e D L A 4 10T learning kit

18.3 Code explanation

The initialization of the function and the function pin definition of the function

have been discussed in the previous course, but they are the same, so | won't repeat

63/152

e

ZHIYISE

them here. | mainly talk about infrared processing functions. When the infrared
receiving function receives the key value, it will judge. This key value can be printed
out through the serial port and viewed in the serial debugger. When the key value we
specify is judged, we define the RGB color corresponding to each number. When the
corresponding number is pressed, the corresponding color will be lit. These key
values can also be customized or Use your own defined number to control the color

of RGB or the number of RGB.

#include "IRremote.h"

#include <Adafruit NeoPixel.h>

#define NUMPIXELS 12 // Number of 2812 lamps
#define RGB PIN 13 // 2812 pin definition
#define HW 2

IRrecv irrecv (HW) ;

decode results results;

Adafruit NeoPixel pixels (NUMPIXELS, RGB PIN, NEO GRB + NEO KHZ800);
void setup() {

// put your setup code here, to run once:

irrecv.enableIRIn() ;

Serial.begin(9c00) ;

pixels.begin(); // Initialize 2812 library functions

pixels.show() ;

pixels.clear(); // Lighting function

void loop() {
// put your main code here, to run repeatedly:
if (irrecv.decode(&results)) // have we received an IR signal?

{
translateIR() ;
Serial.println(results.value,HEX);
irrecv.resume(); // receive the next wvalue
}

64/152

void translateIR()
{

if (results.value==_ Y
{
for(int i=0;i<1Z;i++)
{
pixels.setPixelColor (i, pixels.Color(255,0, 0)):; //Receiwved digital 1RGB display red
pixels.show():
}
}
else if (results.value==0XFFIZET) /J/2
[
for(int i=0;i<lZ;i++)
{
pixels.setPixelColor(i, pixels.Color((l,253%, 0))://Received digital 2RGB display green
pixels.show()
}
}
else if (resulta.value=0XFFTRES) /J/3
{
for({int i=0;iglz;i++)
{
pixels.setPixelColor (i, pixels.Color(0,0, 255)).://Received digital 3RGB display blue
pixels.show()
}
}
else if (results.value=0XFFIOEF) //4
{
for({int i=0;iglZ;i++)
{
pixels.setPixelColor (i, pixels.Color(255,255, 0}): //Receiwved digital 4RGB display yellow
pixels.show():
}
¥
else if (results.value==0XFFIECT) //5
[
for(int i=0;iglZ;i++)
{
pixels.setPixelColor (i, pixels.Color(255,255, 255));//Received digital SRGB display white
pixels.show()
}
}
else if (results.value==(] /6
{
for(int i=0;i<1Z;i++)
{
pixels.setPixelColor (i, pixels.Color(0,0, 0));:;//BReceive digital &RGB light off
pixels.show(} ;
}
}

}

The button in

function in the program.

the red box of the remote control has been set with the specified

|

OO0 0] : JOIC/

OOIO] 10] -
@D@@EO@®®

|

[e)]
ui
~
[iy
[0,
N

ZHIYISES

Lesson 19 Bluetooth control RGB

19.1 Overview

Through this project, you will learn to use the mobile phone APP to use
Bluetooth to connect with the Bluetooth module on the board to realize remote
opening of RGB. After downloading the program, connect to the DuPont cable,
connect to Bluetooth, use the mobile APP to connect to Bluetooth, send R, G, B, Y, W,
O through the APP keyboard, and display five colors of red, green, blue, yellow, and
white. The last one One is to turn off RGB. Note that the characters here are all

capitalized in English.

19.2 Connection description

Connect D13 of the single-chip microcomputer to the "DIN" pin of JP15 with a
Dupont line, connect TX on the single-chip microcomputer to RX on JP32, and
connect RX on the single-chip microcomputer to TX on JP32. After all connections are

made, the connection is successful.Project wiring diagram:

EEEEEEEsE N EEEEEEd

10T learning kit

66/152

19.3 Code explanation

The initialization of the function and the function pin definition of the function
have been discussed in the previous course, but they are all the same, so | won't
repeat them here. | mainly talk about Bluetooth processing functions. When the
Bluetooth receiver function receives the corresponding character, it will make a
judgment. This character can be printed out through the serial port and viewed in
the serial debugger. When the character value we specify is judged, we define the
RGB color corresponding to each number. When the corresponding number is
pressed, the corresponding color will light up. These keys can also be customized or

use self-defined numbers to control the color of RGB or the number of RGB.

#include <Adafruit NeoPixel.h>
fdefine NUMPIXELS 12 // Number of 2812 lamps
fdefine RGB PIN 13 // 2812 pin definition
Adafruit NeoPixel pixels (NUMPIXELS, RGB PIN, NEO GRB + NEO KHZ800):;//Creating light objects
wvold setup() {
// put your setup code here, to run once:
Serial .begin(9600) ;
pixels.begin(); // Initialize 2812 library functions
pixels.show() ;
pixels.clear(); // Lighting function

void loop() {
// put your main code here, to run repeatedly:
HC 06(); //Run Bluetooth processing function

67/152

A

ZHIY IS8

void HC_06()
{
int serialData;
if(Serial.available() > 0) //Determine whether the received data is greater than 0
{
//8erial.println(Serial.read());
serialData = serial.read(); //Receive order function
if('R' == serialData) //R
{
Serial.println("ok");
for(int i=0;i<12;i++)

{

pixels.setPixelColor (i, pixels.Color(255,0, 0)); //The bluetooth receives the "R" character RGB from the mobile phone APP and displays red
pixels.show();
}
}
else if('G' == serialData) //G
{
for(int i=0;i<12;i++)

{

pixels.setPixelColor (i, pixels.Color (0,
pixels.show();

, 0));//The bluetooth receives the "G" character RGB from the mobile phone APP and displays green
}

else if('B' == serialData) //B
{
for(int i=0;i<12;i++)

{

pixels.setPixelColor (i, pixels.Color (0,0,
pixels.show();

5)) 7 //Bluetooth receives the "B" character RGB from the mobile phone APP and displays blue

else if('v' == serialData) //¥
{

for(int i=

{

Ji<1Zri4d)

pixels.setPixelColor(i, pixels.Color (255,
pixels.show() ;

55, 0)); //The bluetooth receives the "Y" character RGB from the mobile phone APP and displays yellow

}
else if('W' == serialData) //W
{

for(int i
{

i< i4+)

pixels.setPizelColor(i, pixels.Color(Z
pixels.show();

) ;//Bluetooth receives the "W" character RGB from the mobile phone APP and displays white
}

else if('0" == serialbata) //O
{
for(int i=0;i<12;i++)
{
pixels.setPixelColor(i, pixels.Color (U
pixels.show() ;

, 0));//Bluetooth receives the "O" character RGB from the mobile phone APP is turned off

68/152

A

ZHIY IS8

19.4 Bluetooth remote control

Equipped with bluetooth serial port assistant for remote control of car;First,
turn on bluetooth and search for Bluetooth devices to find hC-06 connection. The

default connection pairing password is 1234.

Bluetooth Pair with HC-06?
Bluetooth .)

veree 1234
Device name Mil0 > Usually 0000 or 1234

PIN contains letters or symbols

You may also need to type this PIN on
AVAILABLE DEVICES Q the other device.

Allow access to your contacts and call

@ HC-06 history

® «
XMBJZPG

Open bluetooth Assistant and find the bluetooth module name hC-06 just

configured. After successful connection, a remote control main interface will appear.

Connect in

by Controller mode

Q) Switch mode

Connect to a device

|
4

[e0 MiAir2 SE

paired, not connected

1L
TI

Dimmer mode

[e0 HC-06

paired, not connected

Terminal mode

69/152

A

ZHIYISBE

Select the keyboard mode, after entering, you can enter the characters we
specified. After entering "R", the system will return an "OK" to indicate that our

communication is normal, and you can enter other characters to display different

colors.

HC-06 HC-06

> W

type in command

0 @ = S
de@mm@p
ASDFEIHJKL

type in command ™ z X C VN M &

70/152

Lesson 20 ESP8266 Development board

20.1 introduction:

The ESP8266 is a Wi-Fi module ideal for Internet of Things and home automation

projects. This article is a beginner's guide to the ESP8266 development board.

) R A L 5P SR Y : @

20.2 ESP8266 specifications

= 11 b/g/n agreement

= Wi-Fi Direct (P2P). soft AP

= Integrates TCP/IP protocol stack
= Built-in low-power 32-bit CPU

= SDIO 2.0, SPI. UART

71/152

ZHIY IS8

20.3 ESP8266 version

The ESP8266 is available in several versions (see figure below). In our opinion,
the ESP-12E or more commonly known as THE ESP-12E NodeMCU suite is the most

practical version available today.

ESP8266 Development board pin schematic diagram:

DEVKIT

[Tour | cerots |—f wseR |—| wake |
==
-)
(o] o)
=
e
GPIO m m
GND moz |—{ wmost |
3.3 moz |—{ s |
== woo |
e |

GND

72/152

20.4 NodeMCU pin arrangement peripherals

NodeMCU peripherals include

17 universal 1/0 pins ®--
SPI ¥
|
12C =
|
. Ti'H=|
A serial port L
O L
10 bit ADC . g o 3 ¥ 2828238
000000000000000

20.5 What pins are used in NODEMCU ESP8266?

The GPIO number does not match the label on the pin diagram. For example, D1
corresponds to GPIO5, D2 corresponds to GPIO5

Can be used as input/output pins without problem

GPIO5 labeled D1 is commonly used as SCL (12C)

GPI104 labeled D2 is commonly used as SDA (12C)

GPIOO flagged as D3 connects to the FLASH button if pulled low startup fails

GPIO2 marked AS D4 connected to the onboard LED, if pulled low - high at
startup, startup fails

GPIO14 is labeled D5 SPI (SCLK)

GPIO12 is labeled D6 SPI (MISO)

GPIO13 is labeled D7 SPI (MOSI)

ADO is marked as AO

The following are the pins that can be used, but you need to be careful because

they can have unexpected behavior primarily at startup.

e GPIO16 is marked DO HIGH at startup to wake up from deep sleep
e GPIO15 is marked D8 pull to GND: if we pull high, startup fails
e GPIO3 £ boo Fric A RX HIGH

GPIO1 is marked as TX debug output at startup, if pulled down startup fails

73/152

Note:

It is recommended that pins labeled RX and ADO be used as outputs and not TX pins

as inputs.

Pins called GP106 through GPIO11 connect to the flash chip in the ESP8266.

Therefore, it is not recommended to use these pins for input/output functions.

If you want to operate relays, GPIO4 and GPIO5 are the safest GPIO pins to use.

74/152

X

ZHIYISBE

Lesson 21 Installing the ESP8266 development board in

the Arduino IDE

The ESP8266 community has created an add-on for the Arduino IDE that allows

you to program ESP8266 using the Arduino IDE and its programming language.

This tutorial shows how to install the ESP8266 development board in the

Arduino IDE, whether you are using Windows, Mac OS X, or Linux.

Before starting this installation process, make sure you have the latest version
of the Arduino IDE installed on your computer. If not, uninstall it and reinstall it.

Otherwise, it might not work.

You can click on the link:https://www.arduino.cc/en/software Install the latest

Arduino IDE software.

21.1 Install the ESP8266 plug-in in the Arduino IDE

To install the ESP8266 board in your Arduino IDE, follow the instructions below:

In your Arduino IDE, go to file > Preferences.

€ sketch jan21a | Arduino 1.8.15
File Edit Sketch Tools Help

MNew Ctrl+M

Open.. Ctrl+0

Open Recent]
Sketchbook >
Examples >
Close Cirl+W

Save Ctrl+5S

Save As.. Ctrl+Shift+5

Page Setup Ctrl+Shift+P
Print Ctrl+P

Preferences Cirl+Comma

Quit Ctrl+Q

75/152

https://www.arduino.cc/en/software

N

ZHIYISE

Enter it in the Additional Boards Manager URLs field

http://arduino.esp8266.com/stable/package_esp8266com_index.json, As

shown in the figure below. Then, click the ok button:

Preferences *

Settings Network

Sketchbook location:

C:‘I,LIsers‘y_rui__s‘l,DoDJment_s‘l,ﬂ.rduiljo Browse
Editor language: System Default | (requires restart of Arduino)

Editor font size: 122

Interface scale: Automatic | 100 5 2% ({requires restart of Arduino)

Theme; Default theme - (reguires restart of Arduino)

Show verbose output during: [compilation [_] upload

Compiler warnings: ‘Mone ~-

Display line numbers

[] Enable Code Folding

Verify code after upload

[] Use external editor

Angressively cache compiled core

Check for updates on startup

Update sketch files to new extension on save {.pde -> .ino)

Save when verifying or uploading

Additional Boards Manager URJ_s:I R0 1 ot=Ta =T (R o el o1 e te g M ffErduino. esp8266. comfstable fpackage_esp8266com_index.json ﬁ
More preferences can be edited directly in the file
C:\Usersrui_s\AppData\Local\Arduino 15\preferences. txt
m Arduino is not [ur:nir;g:.
Cancel

Note: If you already have ESP32 board urls, you can use commas to separate the urls,
as shown below:
https://dl.espressif.com/dl/package_esp32_index.json,

http://arduino.esp8266.com/stable/package _esp8266com_index.json

76/152

ZHIY IS8

Open board Manage.Go to tools— board—board manager...

D Blink | Arduino 1.8.15

uto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload
1| /% Manage Libraries... Ctrl+Shift+1
2 o Serial Monitor Ctrl+Shift+M
~ o Serial Plotter Ctrl+5Shift+L
£o)
H -) WiF101 / WiFININA Firmware Updater N
g na 1
{
5 I Board: "Arduino Uno® | i Boards Manager...
6 Port | Arduino AVR Boards
_) Get Board Info ‘ Arduino Mbed OS RP2040 Boards
/ 1L] | i
H o Programmer: "Arduino as ISP" i ArdumosmeyatVR Boards
=] R Arduino SAMD (32-bits ARM Cortex-M0+) Beta Boards »
Burn Bootloader

Search for ESP8266 and press the install button of "ESP8266 by ESP8266

Community" :

&9 Boards Manager X

v || =spa2ss |

esp8266 by ESP2266 Community
cards Included in this package:

Ganeric ESPEB266 Module, Generic ESPE285 Module, ESPDuino (ESP-132 Moduls), Adafruit Feather HUZZAH ESPE266, Invent One,

XinaBox CWO01, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, NodeMCU 0.9 (ESP-12 Module)}, NodeMCU 1.0

(ESP-12E Module), Olimex MOD-WIFI-ESPE266(-DEV), SparkFun ESPB266 Thing., SparkFun ESP8266 Thing Dev, SweetPea

ESP-210, LOLIN{WEMOS) D1 R2 & mini, LOLIN{WEMOS) D1 mini Pro, LOLIN{WEMOS) D1 mini Lite, WeMos D1 R1, ESPino (ESP-12

Module}, ThaiEasyElec's ESPino, WifInfo, Arduino, 4D Systems gend4 [oD Range, Digistump Oak, WiFiduino, Amperka WiFi Slot,

Seaad Wio Link, ESPectro Core.

Cnline help

More info

Type | Al

Wait a few seconds to install.

&9 Boards Manager X

Type | Al + | |espa2es

esp8266 by ESP8266 Community versiar|2.5.2 INEI'ALLEd "

Boards included in this package:

Generic ESP8266 Module, Generic ESP8285 Module, ESPDuino (ESP-13 Module), Adafruit Feather HUZZAH ESP8266, Invent One,
XinaBox CWO01, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0
{ESP-12E Module), Olimex MOD-WIFI-ESP8266(-DEV), SparkFun ESPE266 Thing, SparkFun ESP8266 Thing Dev, SweetPea
ESP-210, LOLIN{WEMOS) D1 R2 & mini, LOLIN{WEMOS) D1 mini Pro, LOLIN{WEMOS) D1 mini Lite, WeMos D1 R1, ESPino (ESP-12
Module), ThaiEasyElec's ESPino, WifInfo, Arduino, 4D Systems gen4 IoD Range, Digistump Oak, WiFiduino, Amperka WiFi Slot,
Seead Wio Link, ESPectro Core,

Online help

More info

Select version « Instaft Remove

Close

77/152

ZHIY IS8

21.2 Test the installation

To test the ESP8266 plug-in installation, let's see if we can make the LED blink

through the ESP8266 using the Arduino programming language.

Upload a sketch

Upload the sketch to ESP-12E

Plug your development board into your computer. Make sure you choose the

right circuit board:

@ sketch auglia | Arduino 1.8.15 é Phoenix 2.0
File Edit Sketch Help NodeMCU 0.9 (ESP-12 Module)

ko lonmet ClkHT [NodeMcU 1.0 €5P-12E Module) |
Auchive Shelh Olimex MOD-WIFI-ESPB266(-DEV)
skeith_augtial Fix Encoding & Reload SparkFun ESPA266 Thing
1 void Manage Libraries... Ctrl+Shift+1 SparkFun ESP8266 Thing Dev
2 /71 Sarial Monitar ClrI+Shif|+M i e Sk ben Bhk Bourd
. Serial Plotter Ctrl+Shift+L SweetPea ESP-210
;) WiFi101 / WiFININA Firmware Updater EOLNOWEMDS) IR o
=) : LOLIN(WEMOS) D1 mini Pro
5 J N Boant Macager - LOLINGWEMOS) D1 mini Lite
Glaaia e Arduina AVR Boards P
7 /7 Get Board Info Arduino Mbed QS RP2040 Boards ESPino (ESP-12 Module)
- ! Programmer: "Arduina as ISP Arduino megaAVR Boards ThaiEasyElec's ESPino
o Burn Bootloader Arduino SAMD (32-bits ARM Cortex-M0+) Beta Boards Wifinfo
9] Arduino SAMD (32-bits ARM Cortex-M0+) Boards Ardiino
ATtiny Microcontrollers 4D Systems gend loD Range
ESP32 Arduino Digistump Oak
ESPA266 Boards (2.7.3) | WikdiinG
Industruing SAMD (32-bits ARM Cortex-M0+) Boards Amperka WiFi Slat
Logic Green Arduino AVR Compatible Boards Seced Wio Link
Mighiycas ESPectro Core
You also need to select ports:
@ sketch_sugl1a | Arduino 1.8.15
elp
Auto Format Crl+T
| Archive Sketch
sketch_augiial Fix Encoding & Reload
1 void { Manage Libraries.. Cirl+Shift+1
22 Serial Monitor Ctrl+Shift+M
2 /1) . &5k
3 Serial Plotter Ctrl+Shift+L
a } WiFi101 / WiFININA Firmware Updater
5 Board: "NodeMCU 1.0 (ESP-12E Module)” ¥
~ N Builtin Led: "2" >
6 void
Upload Speed: "115200" >
T /T cpurequency: B0 Mit" sjeatedly:
8 Flash Size: "4MB (FS:2MB OTA:~1019KB)" ¥
g } Debug port: "Disabled” >
Debug Level: "None” >
IwIP Variant: "v2 Lower Memory" >
VTables: "Flash" >
Exceptions: "Legacy (new can return nullptr)”]
Erase Flash: "Only Sketch" >
SSL Support: "All SSL ciphers (most compatible)” |
Port: "COM Serial ports
Get Board Info ~ COMb36
Programmer 3
Burn Bootloader

78/152

ZHIY IS8

Then, copy the supplied code:

int pin = 2;void setup() {

// Initialize GPIO 2 as output.

pinMode(pin, OUTPUT);}// The loop function runs over and over again
void loop() {

digitalWrite(pin, HIGH); // Open the LED

delay(1000); // Delay for a second

digitalWrite(pin, LOW); // Turn off the LED by lowering the voltage

delay(1000); //Delay for a second

Click the "Upload" button in the Arduino IDE and wait a few seconds
until you see the "Upload Completed" message. It's in the lower left

corner.

i| @ lesson_1_ESPB266 blink | Arduino 1.8.15 = o b
e Edit Sketch Toos Help

lesson_1_ESP8266_blink

int pin = 2; //4EEHIRDAS|IE
void setup() {

// WEtheeIo 245 Mk .

pinMode (pin, OUTPUT);:}// (G pA%—i X —kikhiE1T
void leoop() {

T R W N

m ¢

o w0

1 digitalWrite (pin, HIGH): // $IJFLED

11 delay{100): /7 R

12 digitalWrite(pin, LOW): // LT R G HILED
13 delay{100): /7 HEN R

14| 3}

15 |

79/152

iagram

D

iring

213 W

When D4 is connected to the green LED pin in the traffic light module,

the LED flashes.

4

. uOOOOOOOOOOOmm

|
o
|
b
el
—
=
o
=
|
—
p—

Q) .(nE

80/152

Lesson 22 ESP8266 NodeMCU WiFi control traffic light

module

In this tutorial, you will learn how to use the ESP8266 NodeMCU
board to build an asynchronous Web server to control its output. The
board will be programmed using the Arduino IDE and we will use the

ESPAsyncWebServer library.

D B 00

-
L4

%

2
in
é‘
8
5
g
g !

22.1 Asynchronous Network Server

To build a Web server, we'll use the ESPAsyncWebServer library, which provides

an easy way to build an asynchronous Web server.

81/152

22.2 Schematic Diagram:

Before continuing with the code, connect the three leds to the ESP8266. We

connected the LED to GPIO 5, 4 and 2.

L .51 ® °

lﬁ' %
B

e e
o o o [o @ 4
. R

L

[

* @ @ | * ® @ ¢ ° ® 8 " 0 0" " *

3T

on 4400
B3 C3

@ e
Do

= CJTHEEN C3

82/152

22.3 Wiring Diagram

—

BgP

*+ 00000000000

EEEEEE

000

IOT learning kit

Installation library - ESP Exotic Web server

To build a Web server, you need to install the following libraries.

. ESPAsyncWebServer

s ESPAsyncTCP

These libraries cannot be installed through the Arduino library
manager, so you need to copy the library files to the Arduino
installation library folder. Or, in your Arduino IDE, you can go
to Sketch > Include Library > Add .zip Library and select the

library you just downloaded.

Project overview

83/152

https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncTCP/archive/master.zip

ZHIYISE

To better understand the code, let's take a look at how the Web server works.

R ST |

@ 192168.1.110 @ :

ESP Web Server

QOutput - GPIO &

N

Output - GPIO 4

Output - GPIO 2

N

The Web Server contains a title "ESP Web Server" and three
buttons (toggle switches) to control the three outputs. Each slider
button has a label indicating the GPIO output pin. You can easily
remove/add more output.

When the slider is red, the output is on (its status is HIGH). If you
switch the slider, it will turn off the output (changing the state to LOW).

When the slider is gray, the output is off (its status is LOW). If you
switch the slider, it turns on the output (changing the state to HIGH).

Output - GPIO 2
HTTP GET
A /update?output=2&state=1
@ GPIO 2 ON
Qutput - GPIO 2

,-] HTTP GET g F
» SRTEELE
% Jupdate?output=2&state=0 .

GPIO 2 OFF

84/152

ZHIYISBE

Let's see what happens when we toggle buttons. We will see an example of

GPIO 2. The other buttons work similarly.

1. In the first case, you toggle the button to turn on GPIO 2. When this happens,
will it update in /? Output = 2 & status = 1 URL. Based on this URL, we change the

state of GPIO 2 to 1 (HIGH) and turn on the LED.

2. In the second example, when you toggle the button to turn off GPIO 2. When
this happens in/update? Output = 2 & status = 0 URL. Based on this URL, we change

the state of GPIO 2 to 0 (LOW) and turn off the LED.

22.4 ESP asynchronous Web server code

// Library files that need to be installed

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>// Replace with your network credentials
const char* ssid = "REPLACE_WITH_YOUR_SSID"

const char* password = "REPLACE_WITH_YOUR_PASSWORD"

const char* PARAM_INPUT_1 = "output”

const char* PARAM_INPUT 2

"state"

//Create an AsyncWebServer object on port 80

AsyncWebServer server(80

const char index_html PROGMEM = R"rawliteral

<!DOCTYPE HTML><html><head>

<title>ESP Web Server</title>

<meta name="viewport" content="width=device-width, initial-scale=1">

85/152

<link rel="icon" href="data:,">

<style>

html {font-family: Arial; display: inline-block; text-align:
center

h2 {font-size: 3.0rem

p {font-size: 3.0rem

body {max-width: 600px; margin:@px auto; padding-bottom: 25px

switch {position: relative; display: inline-block; width: 120px
height: 68px

switch input {display: none

slider {position: absolute; top: 0; left: 0; right: @; bottom: ©
background-color: #ccc; border-radius: 6px

slider:before {position: absolute; content: ""; height: 52px; width:
52px; left: 8px; bottom: 8px; background-color: #fff
-webkit-transition: .4s; transition: .4s; border-radius: 3px

input:checked+.slider {background-color: #b30000

input:checked+.slider:before {-webkit-transform: translateX(52px
-ms-transform: translateX(52px); transform: translateX(52px

</style>

</head>

<body>

<h2>ESP Web Server</h2>

%BUTTONPLACEHOLDER?

<script>function toggleCheckbox(element

var xhr = new XMLHttpRequest

86/152

A

ZHIYISBE

if(element.checked){ xhr.open("GET",
"/update?output="+element.id+"&state=1", true); }

else { xhr.open("GET", "/update?output="+element.id+"&state=0",
true); }

xhr.send();}
</script>
</body>
</html>
Jrawliteral”;// Replace placeholders in web pages with button sections
String processor(const String& var){
//Serial.println(var);
if(var == "BUTTONPLACEHOLDER"){
String buttons = "";
buttons += "<h4>0Output - GPIO 5</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"5\" " +
outputState(5) + "></label>";
buttons += "<h4>Output - GPIO 4</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"4\" " +
outputState(4) + "></label>";
buttons += "<h4>Output - GPIO 2</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"2\" " +

outputState(2) + "></label>";

return buttons;

return String();

String outputState(int output){

87/152

A

ZHIY IS8

if(digitalRead(output)){

return “"checked";

else {

return B

void setup(){

// Serial port for debugging

Serial.begin(115200);

pinMode (5, OUTPUT);

digitalWrite(5, LOW);

pinMode (4, OUTPUT);

digitalWrite(4, LOW);

pinMode(2, OUTPUT);

digitalWrite(2, LOW);

// Connect to a wireless network

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to WiFi..");

88/152

ZHIYISE

// ESP local IP address is displayed”
Serial.println(WiFi.localIP());
// Route for root / web page

server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

request->send P(200, "text/html", index_html, processor);

1)

// Send a GET request to
<ESP_IP>/update?output=<inputMessagel>&state=<inputMessage2>

server.on("/update™, HTTP_GET, [] (AsyncWebServerRequest *request) {
String inputMessagel;
String inputMessage2;

// GET inputl value on
<ESP_IP>/update?output=<inputMessagel>&state=<inputMessage2>

if (request->hasParam(PARAM_INPUT_1) &&
request->hasParam(PARAM_INPUT 2)) {

request->getParam(PARAM_INPUT_1)->value();

inputMessagel
inputMessage2 = request->getParam(PARAM_INPUT 2)->value();

digitallWrite(inputMessagel.toInt(), inputMessage2.toInt());

}

else {
inputMessagel = "No message sent";
inputMessage2 = "No message sent"; }

89/152

Serial.print("GPIO:
Serial.print(inputMessagel
Serial.print(" - Set to: "
Serial.println(inputMessage2

request->send(200, "text/plain", "OK"

//Start server

server.begin void loop

22.5 How the code works

In this section, we explain how the code works.

Import libraries

First, import the required libraries. You need to include wireless Internet access,

ESPA sync network server and ESPA sync TCP library.

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>

Set up network credentials

Insert your network credentials in the following variables so that ESP8266 can

connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID"

90/152

e

ZHIYISE

const char* password = "REPLACE_WITH_YOUR_PASSWORD"

The input parameters

To check the parameters passed through the URL (GPIO number and its state),

we create two variables, one for output and one for state.

const char* PARAM_INPUT 1 = "output"

const char* PARAM_INPUT_2 = "state"

Keep in mind that ESP8266 receives requests like: / Update? Output =2& state

AsyncWebServer object
Create an object on port 80 of the asynchronous Web server.

AsyncWebServer server(80

Build a web page

All HTML text with styles and JavaScript is stored in index_HTML variable. Now

we'll go through the HTML text and see what each section does.

The title is located at < title> And </tile> Tags. The title is exactly what it sounds like:
the title of your document, which appears in the title bar of your Web browser. In this case,

it is the "ESP Web server."

<title>ESP Web Server</title>

91/152

ZHIYISE

The following <meta >; Tabs make your web pages responsive in any

browser (laptop, tablet, or smartphone).

meta name="viewport

content="width=device-width, initial-scale=1

The next line blocks requests for web site ICONS. In this case, we don't have a
website icon. A website icon is a website icon that appears next to the title of a Web
browser TAB. If we don't add the following line, ESP will receive a request for Favicon

every time we visit the Web server.
link rel="icon" href="data:,

In <style> </style> , Between the tabs, we added some CSS to set the style of

the page. We won't go into the details of how this CSS style works.

style> html {font-family: Arial; display: inline-block
text-align: center
h2 {font-size: 3.0rem
p {font-size: 3.0rem
body max-width 600pXx margin:opx auto
padding-bottom: 25px
.switch {position: relative; display: inline-block
width: 120px; height: 68px
.switch input {display: none
.slider {position: absolute; top: @; left: @; right: 0
bottom: ©@; background-color: #ccc; border-radius: 6px

.slider:before {position: absolute; content: ""; height

92/152

SAC

ZHIYISBE

52px; width: 52px; left: 8px; bottom: 8px; background-color:
#ff; -webkit-transition: .4s; transition: .4s;
border-radius: 3px;

input:checked+.slider {background-color: #b30000
input:checked+.slider:before {-webkit-transform:
translateX(52px); -ms-transform: translateX(52px);
transform: translateX(52px)}

</style>

HTML text
The inside of the<body> </ body>Tags are the content we add to the page.
The < h2 >< /h2 >; Add TAB titles to web pages. In this case, “ESP

Web Server” text, but you can add any other text.

<h2>ESP Web Server</h2>

After the title, we have the button. How buttons appear on web pages
(red: if GPIO is on; Or gray: if GPIO is off) depends on the current GPIO

state.

When you visit a Web server page, you want it to display the correct
current GPIO state. So, instead of adding HTML text, we 11 add a
placeholder to build the button % button placeholder %. When the web page
loads, this placeholder is replaced with the actual HTML text to build

the button with the correct state.

7%BUTTONPLACEHOLDER?

JavaScript

93/152

ZHIY |88

Then, as we explained earlier, there is some JavaScript responsible
for making HTTP GET requests when you switch buttons.

<script>function toggleCheckbox(element
var xhr = new XMLHttpRequest

if(element.checked xhr.open("GET"
"/updateroutput="+element.id+"&state=1", true

else { xhr.open("GET", "/update?output="+element.id+"&state=0"
true

xhr.send </script>

Here is the line that made the request:

if(element.checked){xhr.open("GET"

"/update?output="+element.id+"&state=1", true

Element. Id Returns the ID of an HTML element. The ID of each button
will be the GPIO of the control, as we will see in the next section:
GPIO 5 button » element.id = 5
4

GPIO 4 button » element. id

GPIO 2 button » element.id = 2
The processor

Now we need to create the processor () function to replace the placeholders in
the HTML text with what we define.
When requesting a web page, check the HTML for any placeholders. If it finds

the % button placeholder % placeholder, it returns HTML text to create the button.
String processor(const String& var){
//Serial.printin(var);
if(var == "BUTTONPLACEHOLDER")

{ String buttons = "";

94/152

X

ZHIYISBE

buttons+="<h4>0utput-GPI05</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"5\" " +
outputState(5) + "></label>"; buttons +=
"<h4>0utput - GPIO 4</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"4\" " +
outputState(4) + "></label>"; buttons +=
"<h4>0utput - GPIO 2</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"2\" " +
outputState(2) + "></label>"; return

buttons; } return String(); }

You can easily delete or add more rows to create more buttons.

Let’ s look at how buttons are created. We create a String variable
button named String that contains the HTML text used to build the button.
We concatenate the HTML text with the current output state so that the
toggle button is either gray or red. The current output state is determined
by the output state (&1t; GPIO>) Function (which takes a GPIO number
as an argument). See below:

buttons += "<h4>Output - GPIO 2</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"2\" " + outputState(2) +
"></label>";

Use \ so that we can pass ”” in the string.

This output status () function returns “check” if GPIO is in the open

state or the field is empty if GPIO is off.

StringoutputState(intoutput

if(digitalRead(output

95/152

ZHIY IS8

{ return "checked"; }

else { return ""; }

}
Therefore, when GPIO 2 opens, the HTML text will be:

<h4>0utput - GPIO 2</h4> <label class="switch"> <input
type="checkbox" onchange="toggleCheckbox(this)" id="2"

checked> </label>

Let's break it down into smaller pieces to understand how it

works.

In HTML, a toggle switch is an input type. Described <Input > ;
Flags the specified input field where the user can enter data. Toggle
switch is an input field type check box. There are many other input

field types.

<input type="checkbox">

The check box can be checked or unchecked. When you check,

you have the following:

<input type="checkbox" checked>

Among these changes are the event attributes that occur when we change
the value of an element (check box). Every time you check or uncheck the
toggle switch, it calls the JavaScript function (this) that toggles the

checkbox () for that particular element ID.

This ID specifies a unique ID for the HTML element. Id allows us to

manipulate elements using JavaScript or CSS.

96/152

-
WA
i

ZHIYISH

<input type="checkbox" onchange="toggleCheckbox(this)" id="2" checked>

setup()

Initialize the monitor in setup() for debugging.

Serial.begin(115200);

Use the pinMode () function and set them to LOW when the
ESP8266 is first started. If you add more GPIO, follow the same

process.

pinMode(2, OUTPUT);

pinMode(5, OUTPUT);

digitalWrite(5, LOW);

pinMode(4, OUTPUT);

digitalWrite(4, LOW);

pinMode(2, OUTPUT);

digitalWrite(2, LOW);

Connect to your local network and print the ESP8266 IP address.

WiFi.begin(ssid, password);
while (WiFi.status() = WL_CONNECTED) {

delay(1000);

97/152

Serial.printIn("Connecting to WiFi.."); }
// Print ESP Local IP Address

Serial.printin(WiFi.locallP());

In Setup (), you need to handle what happens when ESP8266 receives the

request. As we saw earlier, you get requests like this:
<ESP_IP>/update?output=<inputMessagel>&state=<inputMessage2>

Therefore, we check if the request contains the PARAM INPUT1 variable
values (output) and PARAM INPUT2(state) and store the corresponding

values in the input 1 message and input 2 message variables.

if(request->hasParam(PARAM_INPUT_1)&&request->hasParam(PARAM_INPUT _
2)){ inputMessagel =request->getParam(PARAM _INPUT _1)->value();
inputMessage2 = request->getParam(PARAM _INPUT_2)->value();
We then control the corresponding state of the corresponding GPIO (input
message 1 variable holds the GPIO number and input message 2 holds the status-0

orl)

digitalWrite(inputMessagel.tolnt inputMessage2.tol

nt

Here is the complete code for handling HTTP GET/UPDATE requests:

server.on("/update”, HTTP_GET AsyncWebServerRequest *request
String inputMessagel
String inputMessage2

// GET inputl value on
<ESP_IP>/update?output=<inputMessagel>&state=<inputMessage2>

if (request->hasParam(PARAM_INPUT_ 1) &&
request->hasParam(PARAM_INPUT_2

98/152

inputMessagel = request->getParam(PARAM_INPUT_1)->value();

inputMessage2 = request->getParam(PARAM_INPUT_2)->value();

digitalWrite(inputMessagel.tolnt(), inputMessage2.toInt());

}
else {
inputMessagel = "No message sent";
inputMessage2 = "No message sent";
}

Serial.print("GPIO: ");
Serial.print(inputMessagel);
Serial.print(" - Set to: ");
Serial.println(inputMessage2);

request->send(200, "text/plain", "OK");});

Finally, start the server:

server.begin();

demonstration
After uploading the code to ESP8266, turn on the serial monitor at
115200 baud rate. Press the onboard RST/EN button. You should get its IP

address.

Open a browser and type ESP IP address. You will be able to access

similar web pages. i
ESP Web Server

Output - GPIO 5

_

Output - GPIO 4

Output - GPIO 2

)

99/152

ZHIYISBE

Press the toggle button to control ESP GPIO. In the meantime, you should

receive the following message in the serial monitor to help you debug your code.

& coms - o X

| Send
11595055 | OMOMSOTLIANE | SS0505 { S#SMNE T ot SnoSTIMABOPST4S " OrSpINSOOMDTSS 1ATSOMADLON | °
Connecting to WiFi..

192.168.1.110

GPIO: 5 - Set to: 1

GPIO: 4 - Set to: 1

GPIO: 2 - Set to: 1

GPFIO: 2 - Set to: 0

GPIO: 2 — Set to: 1

GPIO: 2 - Set to: 0

GPIO: 4 - Set to: 0

GPIO: 5 - Set to: 0

GPIO: 5 - Set to: 1 v
< > i
Autoscroll [Show timestamp BothML &R« | [115200baud Clear output

You can also access the web server from a browser in your smartphone. Every
time you open the Web server, it displays the current GPIO state. Red indicates THAT

GPIO is on and gray indicates that GPIO is off.

Oy @ 192.168.1.110

ESP Web Server

Qutput - GPIO 5

_

Output - GPIO

_B

Output - GPIO 2

100/152

ZHIYISBE

Lesson 23 ESP8266 Node MCU button control LED

In this introductory course, you will learn how to read digital inputs
such as button switches and control digital outputs such as leds using

the ESP8266 NodeMCU board with Arduino IDE.

23.1 ESP8266 NodeMCU controls digital output

First, you need to set the GPIO you are going to control as output.

Use pinMode () as follows:

pinMode(GPIO, OUTPUT

To read numeric input, such as buttons, you can use the digitalRead

() function, which takes the GPIO (integer) you point to as an argument.

digitalRead(GPIO

23.2 Project example
To show you how to use digital input and digital output, we 11 build
an example of a simple project with buttons and leds. We will read the

status of the button and light up the LED accordingly, as shown below.

i

Pushbutton pressed LED on

—d

|
Pushbutton not pressed LED off

101/152

23.3 Wiring diagram:
Before proceeding, you need to assemble a circuit with leds and

buttons. We connected the LED to the universal 1/0 outlet 5 (D1) and the

button universal I1/0 outlet 4 (D2).

BMGPIO 5 (D1)[«of <33 020 e
@ 6l M EASBH R 4
DA: L ‘EA_:_”_ ® @& @ o e & @ @ o e @
GPIO 4 (D2)| . e, Sl S Ehdh
] e— = & g ...‘Jcooon e e
E:: ;::::.L..léooo- e o
DTO * o ¢ & & o o e & & o o ¢ @
DB° * o e & @ & @ e @ & @ 9 e @
- — | [RGB
23.4 Working Code:

// set pin numbers

const int buttonPin = 4; // the number of the pushbutton pin

const int ledPin= 5; // the number of the LED pin

// variable for storing the pushbutton status
int buttonState = 0;
void setup() {

// initialize the pushbutton pin as an input

pinMode(buttonPin, INPUT);

102/152

// initialize the LED pin as an output
pinMode(ledPin, OUTPUT);
}
void loop() {
// read the state of the pushbutton value
buttonState = digitalRead(buttonPin);
// check if the pushbutton is pressed.
// if itis, the buttonState is low
if (buttonState == LOW) {
// turn LED on
digitalWrite(ledPin, HIGH);
}
else {
// turn LED off

digitalWrite(ledPin, LOW);

23.5 Code working principle:

In the following two lines, you create variables to assign pins:

const int buttonPin = 4

const int ledPin = 5

The button is connected to universal I/0 outlet 4 and the LED is

103/152

e

ZHIYISH
connected to universal I/0 outlet 5. When using an Arduino IDE with ESP8266,

4 corresponds to the generic I/0 4 and 5 corresponds to the generic I/0
5.
Next, create a variable to hold the button state. By default, it is

0 (not pressed).
int buttonState = ©

In setup (), you initialize the button as input and the LED as
output. To do this, you use pinMode () to accept the pin and mode

function you point to: input or output.

pinMode(buttonPin, INPUT

pinMode(ledPin, OUTPUT

Inside loop () is where you read the button state and set the LED

accordingly.

In the next line, you read the button state and save it in the variable

button state. As we saw earlier, you use the digitalRead () function.

buttonState = digitalRead(buttonPin

The following if statement checks whether the button state is HIGH.
If so, it turns on the LED using the digitalWrite() function, which takes

ledPin as an argument and sets the state to HIGH.

if (buttonState == HIGH

digitalWrite(ledPin, HIGH

104/152

If the button state is not “"HIGH”, the LED is set to off. Simply set

LOW to the second argument in the digitalWrite() function.

else { digitalWrite(ledPin, LOW); }

23.6 Upload code

Before clicking the upload button, go to Tools > Board, and then
select the Board you are using. NodeMCU 1.0 (ESP-12 E Module).

Go to tools > Port and select the COM port to which ESP8266 is connected.

Then, press the upload button and wait for the “Upload completed” message.

23.7 Object diagram:

o

I

=
0000 o
00 mll
) + 1200000000000

BEEEEE
o

3

‘ge

mw CIRERR

.Dﬁ'

IOT learning kit ‘

105/152

Lesson 24 ESP8266 Controlling LED
Brightness (PWM)

This tutorial shows how to generate PWM signals through ESP8266
NodeMCU using the Arduino IDE. For example, we will dim the LED brightness

by changing the duty cycle over time.

24.1 ESP8266 NodeMCU PWM

The ESP8266 GPIO can be set to output OV or 3.3V, but cannot output
any voltage between them. However, you can use pulse width modulation (PWM)
to output “false” intermediate voltages, which is how you generate
different levels of LED brightness for this project.

If you quickly alternate the voltage of the LED between high and low
levels, your eye can’t keep up with the speed of the LED switch; You 11

just see some gradients in the brightness.

o fh

This is basically how PWM works — by producing an output that varies

between HIGH and LOW at a very HIGH frequency.

Duty cycle is part of the period during which the LED is set to high

level. The following figure illustrates how PWM works.

106/152

value that you see

¥

a) 80% brightness
MAX =} -

— —= = b —— = =] -

OFF

b) 20% brightness

SRR P TS S pe— -

¢) 50% brightness

e B o B T

d) 100% brightness

e) 0% brightness

An LED with a duty cycle of 50% has a brightness of 50%, a duty cycle of
0 means the LED is fully off, and a duty cycle of 100 means the LED is

fully on. Changing duty cycle is how you produce different brightness

levels.
analogWrite ()
To generate a PWM signal on a given pin, use the following function:
analogWrite(pin, value);

Pin: PWM can be used with pins 0 to 16
value: Should be in the 0 to PWM range, default is 1023. When the value is 0, the

PWM on this pin is disabled. The value 1023 corresponds to 100% duty cycle

You can change the PWM range by calling:
analogWriteRange(new_range);

By default, the ESP8266 PWM frequency is 1kHz. You can change the PWM

frequency in the following ways:

analoghriteFreq(new_frequency);

107/152

24.2 Schematic diagram:

)

® 0 0 0 0
. 5 & &
. & & 8 5 5 & 8 & S 8 S s 8 e e s

e & & & & & & & & 4 & & 0

a & & & &5 &5 & 5 5 & & o0

2 0 9 0 85 8 08 0 8080 g e g
s 8 & & & 8 8 8 8 8 8 8o l, . '
e 2 2 5 & 2 8 2 8 8 8 00 .l:“ :‘:
. 8 8 0 & 8 8 8 8 8 0 s e

e & & & & & & & 5 & 8 & a0

ESP8266 NodeMCU PWM code:

const int ledPin = 2; //Defines led pins (D4)

void setup

void loop

//Improve LED brightness

for(int dutyCycle = 0; dutyCycle < 1023; dutyCycle++

// Use PWM to change LED brightness

analogWrite(ledPin, dutyCycle

delay(1

108/152

// Reduce LED brightness
for(int dutyCycle = 1023; dutyCycle > 0; dutyCycle--
// Use PWM to change LED brightness
analogWrite(ledPin, dutyCycle

delay(1

Code working principle:

First define the pin LED connected to. In this case, the LED is connected to the
universal INPUT/output port 2 (D4).

const int ledPin = 2

In Loop (), you can change the duty cycle between 0 and 1023 to increase
the LED brightness.

for(int dutyCycle = ©; dutyCycle < 1023; dutyCycle++
// Use PWM to change LED brightness
analogWrite(ledPin, dutyCycle

delay(1

To set the LED brightness, you need to use the function that
analogWrite () accepts GPIO as an argument, where you want to get the PWM

signal and a value between 0 and 1023 to set the duty cycle.

109/152

24.3 Upload code

> Board and select your ESP8266

In your Arduino IDE, go to Tools

model.

iagram:

D

iring

244 W

e

—
(]
N

=
O
O
O
(o]
(o]
O
(*)
O
(o]
(o]
(¢}
]

=
[==]

I ENNNENENENE

LILLI

e |

i
000

=1 =1 =1

o] Lo} [o]

o)

ULUCUCLLLLLY |

B @D EE EE

110/152

ZHIY |88

Lesson 25 ESP8266 Node MCU Web Server
Control LED Brightness (PWM)

This tutorial shows how to build the ESP8266 NodeMCU Web server with sliders
to control LED brightness. You'll learn how to add a slider to your Web server project,
get its value, and save it in a variable that ESP8266 can use. We will use this value to
control the duty cycle of the PWM signal and change the brightness of the LED. For

example, you can also control servo motors instead of just leds.

i T

1,..

FCC ID: 2AL38-ESP-F
IBM24G B02.11bigin

~N5 GND 3V3

't 8

;B
3
§
q
8
8.

, . -
] il - ansa £
A D7 3;% 1
.. t 3 »

- K

L

E g

In addition, you can modify the code in this tutorial to add a slider for your project to

set thresholds or any other values you need to use in your code.

HTTP GET REQUESTS

ESP Web Server —> /slider?value=0¢ ——> ﬁ
1023

———> /slider?value=512 ——> 'ﬁ‘

——> /slider?value=1023 ——> ﬂ

111/152

ESP8266 hosts a Web server that displays Web pages with sliders;

When you move the slider, you make an HTTP request to ESP8266 with the new
slider value;

HTTP requests take the following format: GET/slider? Value =SLIDERVALUE, where
the SLIDERVALUE is a number between 0 and 1023. You can modify the slider to
include any other scope;

ESP8266 gets the current value of the slider from the HTTP request;

ESP8266 adjusts PWM duty ratio according to slider value;

This is useful for controlling the brightness of leds (as we will do in this example),

servomotors, setting thresholds, or other applications.

Arduino IDE

We will program the ESP8266 NodeMCU board using the Arduino IDE, so make
sure you have the ESP8266 board installed in your Arduino IDE before continuing

with this tutorial.

25.1 Working Code:

// Add the required libraries

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>

// Replace with your network credentials (enter your WiFi name and WiFi password)
const char* ssid = "REPLACE_WITH_YOUR_SSID"

const char* password = "REPLACE_WITH_YOUR_PASSWORD"

const int output = 2

String sliderValue = "0"

const char* PARAM_INPUT = "value"

112/152

// Create an AsyncWebServer object on port 80

AsyncWebServer server(80

const char index_html PROGMEM = R"rawliteral (<!DOCTYPE
HTML><html><head>

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>ESP Web Server</title>

<style>

html {font-family: Arial; display: inline-block; text-align:
center

h2 {font-size: 2.3rem

p {font-size: 1.9rem

body {max-width: 400px; margin:@px auto; padding-bottom: 25px

slider -webkit-appearance: none; margin: 14px; width: 360px
height: 25px; background: #FFD65C

outline: none; -webkit-transition: .2s; transition: opacity .2s
slider::-webkit-slider-thumb {-webkit-appearance: none
appearance: none; width: 35px; height: 35px; background: #003249; cursor:

pointer

slider::-moz-range-thumb { width: 35px; height: 35px; background:
#003249; cursor: pointer

</style></head><body>

<h2>ESP Web Server</h2>

<p>%SLIDERVALUE%</p>

<p><input type="range" onchange="updateSliderPWM(this)"
id="pwmSlider" min="0" max="1023" value="%SLIDERVALUE%" step="1"

class="slider"></p><script>

function updateSliderPWM(element

113/152

ZHIY IS8

var sliderValue = document.getElementById("pwmSlider").value;

document.getElementById("textSliderValue").innerHTML = sliderValue;

console.log(sliderValue);

var xhr = new XMLHttpRequest();

xhr.open("GET", "/slider?value="+sliderValue, true);

xhr.send(); }</script></body></html>)rawliteral™;

// Replace placeholders in web pages with button sections

String processor(const String& var){

//Serial.println(var);

if (var == "SLIDERVALUE"){

return sliderValue;

return String();}

void setup(){

// Serial port for debugging

Serial.begin(115200);

analoglWirite(output, sliderValue.toInt());

// Connect to Wi-Fi

WiFi.begin(ssid, password);

while (WiFi.status() !'= WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to WiFi..");

114/152

// ESP local IP address is displayed”

Serial.println(WiFi.localIP());

// Route for root / M

server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

request->send P(200, "text/html", index_html, processor);

1)

// Send a GET request to<ESP_IP>/slider? value= < inputMessage >
server.on("/slider", HTTP_GET, [] (AsyncWebServerRequest *request) {

String inputMessage;

// In<ESP_IP>Get input1 value on /slider? value= < inputMessage >

if (request->hasParam(PARAM_INPUT)) {

inputMessage = request->getParam(PARAM_INPUT)->value();

sliderValue = inputMessage;

analogWrite(output, sliderValue.toInt());

else {

inputMessage = "No message sent";

Serial.println(inputMessage);

request->send(200, "text/plain", "OK");

1)

// Start server

115/152

server.begin

void loop

25.2 Code working principle:

First, import the required libraries. This ESP8266WiFi,

ESPAsyncWebServe and ESPAsyncTCP are required to build Web servers.

#include <ESP8266WiFi.h>
#include <ESPAsyncTCP.h>
#include <ESPAsyncWebServer.h>

Set network credentials:

Insert your network credentials in the following variables
so that ESP8266 can connect to your local network.
const char* ssid = "REPLACE_WITH_YOUR SSID"

const char* password = "REPLACE_WITH_YOUR_PASSWORD"
Variable definition:

We will control the brightness of the ESP8266° s built—in LED. 2. Save

the GPIO we want to control in the output variable.

const int output = 2

This slider value variable will hold the slider value. At the beginning, it is set to

Zero.

String sliderValue = "0"

Input parameters:

This parameter inputs that the variable will be used to “search” for

the slider value in the request received by ESP8266 when the slider moves.

116/152

ZHIYISE
(Remember: ESP8266 will receive a request like GET/slider?

value=SLIDERVALUE)
const char* PARAM_INPUT = "value"

It searches for value on the URL and gets the value assigned to it.

25.3 Build a web page

Now let’s go to the Web server page.

ESP8266 IP HhiE

wig R {Ew
ESP8266 IP Address

Heading (h2)

%SLIDERVALUEY%

placeholder i)
Paragraph
e (id = "textsSlidervValue")
Paragraph -
34
{Ra nge lnpult Type) XAFHRE
id = "pwmSlider"
RN KR
B

The web page for this project is very simple. It contains a heading,

a paragraph, and a type range of input.

Let’s look at how the web page is created.

All HTML text containing styles is stored in the index HTML variable.

Now we’ 11 go through the HTML text and see what each section does.

117/152

X

ZHIYISBE

The following & 1t; meta> Tags make your web page responsive in

any browser.

<meta name="viewport"” content="width=device-width,
initial-scale=1">

Between<title> </ TITLE>Tags enter the name of our Web server. A
title is text that appears on a Web browser TAB.

Style

In<style><{/style>Between the tabs, we added some CSS to set the style

of the page.

<style> html {font-family: Arial; display: inline-block;
text-align: center;} h2 {font-size: 2.3rem;} p {font-size:
1.9rem;} body {max-width: 400px; margin:@px auto;
padding-bottom: 25px; } .slider { -webkit-appearance: none;
margin: 14px; width: 360px; height: 25px; background:
#FFD65C; outline: none; -webkit-transition: .2S;
transition: opacity .2s;} .slider::-webkit-slider-thumb
{-webkit-appearance: none; appearance: none; width: 35px;
height: 35px; background: #003249; cursor:
pointer;} .slider::-moz-range-thumb { width: 35px; height:

35px; background: #003249; cursor: pointer; ; </style>

Basically, we set up the HTML page to display Arial text in a block

with no margins, aligned in the center.

118/152

<

ZHIYISBE

html {font-family: Arial; display: inline-block;

text-align: center;}

The lines of the face set the font size for the heading (h2) and

paragraph (p).

h2 {font-size: 2.3rem;}

p {font-size: 1.9rem;}

Sets the HTML body properties.

body {max-width: 400px; margin:0px auto; padding-bottom:

25px; }
The following row custom slider:

.slider { -webkit-appearance: none; margin: 14px; width:
360px; height: 25px; background: #FFD65C; outline: none;
-webkit-transition: .25S; transition:
opacity .25} .slider::-webkit-slider-thumb
{-webkit-appearance: none; appearance: none; width: 35px;
height: 35px; background: #003249; cursor:
pointer;} .slider::-moz-range-thumb { width: 35px; height:

35px; background: #003249; cursor: pointer; }

HTML text
The inside of the<body> </ body>Tags are the content we add to the page.
The<h2> </ h2>Add TAB titles to web pages. In this case, "ESP Web Server" text,

but you can add any other text.

119/152

h2>ESP Web Server</h2

The first segment will contain the current slider value. That
particular HTML tag has the ID textSliderValue assigned to it so that
we can reference it later.

p>%SLIDERVALUE%</span p

The % slider value % is a placeholder for the slider value. When ESP8266 sends it
to the browser, it will be replaced with the actual value. This is useful for displaying

the current value when you first visit the browser.
Create the slider

To create sliders in HTML, use < input> The label. Described
& 1t; Input & gt; The tag specifies a field in which the user can enter
data.

There are multiple input types. To define the slider, use the Type
attribute and the range value. In the slider, you also need to define the
minimum and maximum ranges (in this case, 0 and 1023, respectively) using

the “min” and "Max” attributes.
p><input
type="range"onchange="updateSliderPWM(this)

id="pwmSlider" min="0" max="1023" value="%SLIDERVALUE%

step="1" class="slider p

You also need to define other properties, such as:

Specify the interval between valid numbers in the step property. In our case, it

issetto1;

Style slider in class (class = "slider");

120/152

The ID used to update the current location displayed on the web page;
The onchange property of the calling function (updateSliderPWM(this)) sends
an HTTP request to ESP8266 as the slider moves. The this keyword refers to the

current value of the slider.

script function updateSliderPWM(element var
sliderValue = document.getElementById("pwmSlider").value

document.getElementById("textSliderValue").innerHTML B

sliderValue; console.log(sliderValue var xhr = new
XMLHttpRequest xhr.open("GET"
"/slider?value="+sliderValue true xhr.send

script

The next line gets the current slider value by its ID and saves it
in the slider value JavaScript variable. Previously, we assigned the id
of the slider to the PWM slider. So we get it as follows:

Var sliderValue= document. getElementById (“pwmSlider”). value;

After that, we set the slider label (whose ID is the text slider value)
to the variable saved in the slider value.

Finally, an HTTP GET request is issued.

var xhr = new XMLHttpRequest();
xhr.open("GET", "/slider?value="+sliderValue, true);

xhr.send();

For example, when the slider is at 0, you make an HTTP GET

request to the following URL.:

http://ESP-IP-ADDRESS/slider?value=0
When the slider value is 200, you will receive the request on the

concern URL.

121/152

ZHIYISE

http://ESP-IP-ADDRESS/slider?value=200

This way, when ESP8266 receives a GET request, it can retrieve the
value parameter in the URL and control the PWM signal accordingly, as we’ 11
see in the next section:
Processor:

Now we need to create the processor () function that will replace the
placeholders in our HTML text with the current slider value when you first

access it in your browser.

// Replaces placeholder with button section in your web

page String processor(const String&

var){ //Serial.println(var); if (var =

"SLIDERVALUE"){ return sliderValue; } return String(); }

When requesting a web page, we check for any placeholders in
the HTML. If it finds the %SLIDERVALUE% placeholder, we will return
the variable saved in the SLIDERVALUE.

setup()

Under Setup (), initialize the serial monitor for debugging.
Serial.begin(115200);

Set the duty cycle of the PWM signal to save at the slider value (it is set to 0

when ESP8266 starts).
analoghWirite(output, sliderValue.tolInt());
Connect to your local network and print the ESP8266 IP address.

// Connect to Wi-Fi WiFi.begin(ssid, password); while
(WiFi.status() = WL _CONNECTED) { delay(1000);
Serial.println("Connecting to WiFi.."); } // Print ESP

Local IP Address Serial.println(WiFi.locallIP());

122/152

&

ZHIYISBE

Processing requests:
Finally, add the next few lines of code to handle the Web server.

// Route for root / web page

server.on("/", HTTP_GET, | | (AsyncWebServerRequest
*request){ request->send P(200, "text/html", index_html,
processor); |);

//Send a GET request to <ESP_IP>/slider?value=<inputMessage>
server.on("/slider", HTTP_GET, || (AsyncWebServerRequest
*request) { String inputMessage; // GET inputl value on

<ESP_IP>/slider?value=<inputMessage> if

(request->hasParam(PARAM_INPUT)) { inputMessage

request->getParam(PARAM _INPUT)->value(); sliderValue
inputMessage; ledcWrite(ledChannel,
sliderValue.toInt()); ; else { inputMessage = "No message
sent”; } Serial.println(inputMessage); request->send (200,

"text/plain", "OK"); });

When we make a request for the root URL, we send the HTML text stored in
the index HTML variable. We also need to pass in the Processor () function,

which will replace all placeholders with the correct values.

// Route for root / web page server.on("/", HTTP_GET,
| | (AsyncWebServerRequest *request){ request->send P(200,

"text/html", index_html, processor); });

We need another handler that will save the value of the current slider and set the

corresponding LED brightness.
123/152

server.on("/slider", HTTP_GET, []
(AsyncWebServerRequest *request) { String inputMessage; //
GET inputl value on <ESP_IP>/slider?value=<inputMessage>

if (request->hasParam(PARAM_INPUT)) { inputMessage

request->getParam(PARAM_INPUT)->value(); sliderValue

inputMessage; ledcWrite(ledChannel,
sliderValue.toInt()); } else { inputMessage = "No message
sent"; } Serial.println(inputMessage); request->send (200,

"text/plain”, "OK"); });
Basically, we get the slider value in the following lines:

if (request->hasParam(PARAM _INPUT)) { inputMessage =
request->getParam(PARAM INPUT)->value(); sliderValue =

inputMessage;

Then, update the LED brightness (PWM duty cycle) with the following command.
LedcWrite () accepts the channel and value you want to control as a function of

parameters.

ledcWrite(ledChannel, sliderValue.toInt());

Finally, start the server.

server.begin();
Since this is an asynchronous Web server, we don't need to write anything in loop().
void loop(){ }

That's how the code works.

124/152

Upload code:

Now, upload the code to your ESP8266. Make sure you select the correct
circuit board and COM port.

After uploading, turn on the serial port monitor at 115200 baud rate
and press the ESP8266 reset button. The ESP8266 IP address should be

printed on the serial monitor.

@ comz - O X

| Send

load:0x40080400, len:5816
entry 0x400806ac
Connecting to WiFi..
[192.168.1.114]

< >

Autoscroll [Show timestamp Newiine ~ |115200baud + | | Clear output

25.4 Web server Demo

Open a browser and enter the ESP8266 IP address. Your Web server should

display the slider and its current value.

@ ESP Web Server x +

“ C © 192.168.1.114 w N P

ESP Web Server
521

Move the slider to see the brightness of the ESP8266° s built—in LEDS

increase and decrease.

125/152

ZHIYISBE

Lesson 26 ESP8266 controls WS2812 lights

via Blinker

This tutorial shows how Nodemcu ESP8266 can control RGB color changes via
Blinker. You'll learn how to use Blinker APP to control it from around the world via

the Internet of Things; For example, you can also control servo motors or DC motors

instead of just RGB.

WS2812BHtR @ lz[

==

O,
26.1 Arduino configuration

Install the blinker Arduino
1. Open the tutorial library files to find blinker library. Adafruit_NeoPixellibrary
unzip to my computer > Document > Arduino > libraries folder;

T » Arduino » libraries

s

=i i HEr =i Fuh
Attiny84 10 2021-04-14 12:59 prges
BalanceCar 2020-08-10 13:44 i
BatReader 2020-12-12 119 e
blinker 2021-10-07 11:48 e

126/152

WAV
ZHIYISBE

2. Add a device to the App and obtain the Secret Key

1. Enter the App, click "+" in the upper right corner, and then
select Add device;

2. Click Arduino > WiFi access,

3. Select a service provider to access;

4. Copy the requested file secret Key;

(Note: If you haven't used Blinker before, you'll need to sign up for

an account with your mobile number.)

WiFi#EA

[J=PUEiEs

E4#IA T Secret KeyFI{REEFREFEH:

1d9

REIHAIRE

127/152

26.2 Working Code:

(Note: the value of auth[] in the source code is the Secret Key obtained in
the App. Other configurations can be set according to their own
conditions.)

#define BLINKER_PRINT Serial

#define BLINKER_MIOT _LIGHT

#define BLINKER_WIFI

#include <Blinker.h>

#include <Adafruit_NeoPixel.h>

char auth[] = "******xxkn. [x*%XXEnter the secret key you obtained
in Blinker****/

#define PIN 15 // DINPIN (GPIO15, D8)

#define NUMPIXELS 60 // Defines the number of RGB to be lit
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB
+ NEO_KHZ800);

// Creating a Component Object

BlinkerRGB RGB1("RGB");

int LED_R=0,LED_G=0,LED_B=0,LED_Bright=180; // Define RGB and
brightness

bool WIFI_Status = true;

void smartConfig() //Configuration network function

{

128/152

WiFi.mode(WIFI_STA);
Serial.printIn("\r\nWait for Smartconfig...");
WiFi.beginSmartConfig();//Waiting for the user name and password
sent by the mobile phone
while (1)
{
Serial.print(".");
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
delay(1000);
if (WiFi.smartConfigDone())//Exit the waiting for
{
Serial.printIn("SmartConfig Success");
Serial.printf("SSID:%s\r\n", WiFi.SSID().c_str());
Serial.printf("PSW:%s\r\n", WiFi.psk().c_str());

break;

}

void WIFI_Set()//

{

129/152

//Serial.printin("\r\n Are connected");

int count =0;

while(WiFi.status()!=WL_CONNECTED)

if(WIFI_Status)

{
{
}

else
{

Serial.print(".");
digitalWrite(LED_BUILTIN, HIGH);
delay(500);
digitalWrite(LED_BUILTIN, LOW);
delay(500);

count++;

if(count>=5)//5s

{
WIFI_Status = false;
Serial.printIn("WiFi connection failed, please use
mobile phone to configure network");
}

smartConfig(); //Wechat intelligent distribution network

130/152

}

/* Serial.printIn("The connection is successful");
Serial.print("IP:");
Serial.printIin(WiFi.locallP());*/

}

void SET_RGB(int R,int G,int B,int bright)

{

for (uint16_ti=0; i < NUMPIXELS; i++) //Change the color of the
light strip

{

pixels.setPixelColor(i,R,G,B);

}

pixels.setBrightness(bright);//brightness

pixels.show(); //Send display
}

//APP RGB Color setting callback
void rgb1 callback(uint8_t r_value, uint8 t g value,

uint8_t b_value, uint8_t bright_value)

131/152

//digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));
BLINKER_LOG("R value: ", r_value);
BLINKER_LOG("G value: ", g_value);
BLINKER_LOG("B value: ", b_value);
BLINKER_LOG("Rrightness value: ", bright_value);
LED_Bright = bright_value;
SET _RGB(r_value,g_value,b_value,LED_Bright);

}

void setup() {
// Initializing the serial port

Serial.begin(115200);

pixels.begin();//WS2812 initialization

pixels.show();

pinMode(LED_BUILTIN, OUTPUT);

#if defined(BLINKER_PRINT)
BLINKER_DEBUG.stream(BLINKER _PRINT);

#endif

WIFI_Set();
// blinker initialization

Blinker.begin(auth, WiFi.SSID().c_str(), WiFi.psk().c_str());

132/152

ZHIY |88

RGB1.attach(rgb1_callback);//Registers callback functions that

adjust colors

void loop() {

Blinker.run();

The source code only to achieve monochrome display, more color or cool effect
display please modify the source code.

Upload code:

@ Lesson7 | Arduino 1.8.13
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
Lesson? Fix Encoding & Reload
//2021.10. Manage Libraries... Ctrl+Shift+1
#define BI| Serial Maonitor Ctrl+ Shift+M
#define BI Serial Plotter Ctrl+Shift+L
$define BI ESP8266 LittleFS Data Upload

#include <« WiFi101 f WiFININA Firmware Updater

#include <

Board: "NodeMCU 1.0 (ESP-12E Module)" y

Builtin Led: "2" »

char authl ypload Speed: "115200° >

CPU Frequency: "80 MHz" »

#define PI Flash Size: "4MB (F5:2MB OTA:~1019KE)" H

$define NU Debug port: "Disabled” »
Adafruit N Debug Level: "Mone” *NEO CI

= IwiP Variant: "v2 Lower Memory" 5| =

VTables: "Flash” >

/7 SRR C++ Excepticlrns: 'Dilsabled (new aborts on com)" »

. Stack Protection: "Disabled” b

e Erase Flash: "Only Sketch" »

SSL Support: "All SSL ciphers (most compatible)” b
MMU: "32KB cache + 32KE IRAM (balanced)” |
Non-32-Bit Access: "Use pgm_read macros for IRAM/PROGMEM"

Port: "COMZ25"

Get Board Info

Programmer

Burn Bootloader

133/152

VA
ZHIYIZE

26.3 App Connection Configuration

Connected devices

Open the Lighting App and click the sidebar button - > Developers
- >Development tools - > EspTouch/SmartConfig, enter the WiFi password and click

to start the configuration.

< FF R

P MIrRE: 1/10
Z|4ARTIE: 1970-01-01 SRiE: 0/0
= HIRTERE: 0/5

Ll [P

HiEEE ERiR®

EspTouch/SmartConfig
B EwififA S R BRI TER N

D)
ApConfig y

B Ewifif s R HITRERN

L 683135 S8 beta
L e s e

BleConfig
B I SRRt AT EC

e

134/152

\‘ ',
ZHIYISBE

Enter WIFI password

< EspTouchfRiEEEE

LBREFEEHANFTEERS
2MMAWIFIERS, HoEFREE

WiFi %5 zhiyil
WIiFIiZERE + » ¢ o = o 0 o o v s T
@ iEwB
FHEECE
TR EADWIF
Configuration is successful
B ERIN

MAC: d8f15b11480f
IP: 192.168.3.107

135/152

VA
ZHIYIZE

Device configuration

1.Return to the blinker App home page and you can see that the device is online.

Click the device to enter the configuration page.

L

WS2812BKT#

136/152

VAZ
ZHIYISE

2.Click the device Edit button;

WS2

1k

3. Click the Edit button to enter the component editing state. Click the color
component at the bottom of the component list to add it to the interface, then click
the new color component to enter the component editing interface, change the data

key name to RGB, and click Save;

ARt 1

SHinE
EhtigE
T T ‘ RGE ‘
BrRuA ‘ wEEES \
HBRE DI 0 3558 0528

137/152

VA
ZHIYIZE

4. After editing, click the lock button in the upper right corner to finish editing,

and then you can control the lamp belt.

WS2812Bi#& R m KN &

() =

WS2812B&1: @ [Z

(e =

Ht
=

138/152

Y §'I
i

ZHIYIZE

26.4 The wiring diagram:

* = 00000000000

EEEEE

IOT learning kit

139/152

ZHIYI15BE

Lesson 27 ESP8266 Nodemcu displays

temperature and humidity in combination

with Blinker

In this course, we will use the DHT11 temperature and humidity

sensor connected to ESP8266 Nodemcu to display the temperature and

humidity in Blinker APP.

27.1 DHT11 Sensor:

The DHT11 sensor provides humidity and temperature data. It has the following

pin interface.

[
NEWNE
SEEN? 5
(=]
VDD VDD
5K 1Pin
MCU DATA 2Pin
4Pin
GND
BE Y [FEE BX

140/152

DHT11

ZHIY IS8
In the last few sections we learned to use the Arduino IDE to develop the

Settings required for esp8266.
27.2 Install the library

As mentioned earlier, we assume that ESP8266 is programmed using an Arduino

IDE. If you have not already configured it to support ESP8266 boards, review lesson

20.
Add DHT11 libraries to the Arduino IDE.

The library can be easily installed through the Arduino IDE library

manager, as shown in Figure 3.

& Lbrary Manager >
Type Al1 v | Topic (A1l ~ | |DHT11
Edulntre P
by Arduino LLC

Library used for super-fast introduction workshops Is intended to be used with Arduine UNC / MICRO / MEGA [/ NANC classic [/
NANC Every / MKR / WiFi REV2 and a set of basic components (led, button, piezo, LM25, thermistor, LDR, PIR, DHT11, and

sarvo) as a way to introduce people to the basic aspects of Arduine during short workshops.
More info

DHT semnsor library

by Adafruit Version 1.4.2 INSTALLED

Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity
Sensors

[

DHT sensor library for ESPx
by beegee_tokyo

Arduino ESP library for DHT11, DHT22, etc Temp & Humidity Sensors Optimized libray to match ESP32 requirements. Last
changes: Fix negative temperature problem {credits @helijunky)
More info

Clase

27.3Working code explanation:

(If you have a Xiao Ai device, this code can also be used to check
the temperature and humidity in your home.)

#define BLINKER_WIFI

#define BLINKER_MIOT_SENSOR //Xiao Ai defined it as sensor equipment

#include <Blinker.h>

#include <DHT.h>

char auth[] = "¥****x*x*1. //Device obtained by lighting APP

char ssid[] = "*******x. //The name of the WiFi

141/152

char pswd[] = "¥****x*x*xu. [/\NiFi password
BlinkerNumber HUMI("humi"); //Define the humidity data key name
BlinkerNumber TEMP("temp"); //Define the temperature data key name
#tdefine DHTPIN 2 //Define DHT11 module connection pin GP102 (D4)
#define DHTTYPE DHT11 // Use the DHT 11 temperature and humidity module
//#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
//#define DHTTYPE DHT21 // DHT 21 (AM2301)
DHT dht(DHTPIN, DHTTYPE); //5E X dht
float humi_read =0, temp_read =0;
void heartbeat()
{
HUMI.print(humi_read); //Send humidity data back to BlinkerApp
TEMP.print(temp_read); //Return temperature data to BlinkerApp
}
void miotQuery(int32_t queryCode) //Xiao Ai voice command feedback
{ BLINKER_LOG("MIOT Query codes: ", queryCode);
int humi_read_int=humi_read; //Remove humidity floating point
BlinkerMIOT.humi(humi_read_int); //Xiao Ai receives humidity
BlinkerMIOT.temp(temp_read); //Xiao Ai receives the temperature
BlinkerMIOT.print();

}

void setup()

{

Serial.begin(115200);
BLINKER_DEBUG.stream(Serial);
BLINKER_DEBUG.debugAll();
Blinker.begin(auth, ssid, pswd);
Blinker.attachHeartbeat(heartbeat);

dht.begin();

142/152

BlinkerMIOT.attachQuery(miotQuery);

}
void loop()
{ Blinker.run();
float h = dht.readHumidity();
float t = dht.readTemperature();

if (isnan(h) | | isnan(t))
{
BLINKER_LOG("Failed to read from DHT sensor!");
}
else
{ BLINKER_LOG("Humidity: ", h, " %"); //blinker APP Read display temperature
BLINKER_LOG("Temperature: ", t, " *C"); //blinker APP Read display humidity
humi_read = h;
temp_read = t;

}
Blinker.delay(2000);
}

In the comments of the code we can easily find which pin is used to receive data

with esp8266, but this refers to GPIO2, not D2 of our ESP8266d Nodemcu, but D4.

DEVKIT

m a0ce GP1016 H USER H WAKE]
== =3
==
- (o)
S ST G =)
s001 KEE3 3.
GROUND SDCMD “ GND
=) EB = =3
o (oo =

ART

)
&
S

wios |~ woz | st |
wiots | mo2 | wes |

HSPT/SPT 3.3V

Q
2
S

GND

] JEEHEEL

w
z

143/152

Open Arduino IDE to write code, compile and upload, and burn programs.

i| Arduino 1.8.13

etchl Tools |Help

Auto Format

Archive Sketch

§ Fix Encoding 8. Reload
at Manage Libraries...
=2 Serial Monitor

Serial Plotter

(ig ESPB266 LittleFS Data Upload
WiFi101 / WiFININA Firmware Updater

Board: "NodeMCU 1.0 (ESP-12E Module)"
Builtin Led: "2"

Upload Speed: "115200"

CPU Frequency: "80 MHz"

BI Flash Size: "4MB (F5:2MB OTA:~1019KB)"
BI Debug port: "Disabled”

4

hu Debug Level: "None"
tEI IwlIP Variant: "v2 Lower Memory”
WTables: "Flash"
C++ Exceptions: "Disabled (new aborts on oom)"
Stack Protection: "Disabled”
Erase Flash: "Only Sketch”
nkei S5L Support: "All S5L ciphers {most compatible)”
MMLU: "32KB cache + 32KB IRAM (balanced)"
Mon-32-Bit Access: "Use pgm_read macros for IRAM/PROGMEM"
Port: "COM25"
Get Board Info

Programmer

Burn Bootloader

27.4 Wiring Diagram

Our DHT11 module has three pins: V, G and S.

144/152

Ctrl+T

Ctrl+Shift+1
Ctrl+Shift+ M
Ctrl+Shift+L

= D:

After restarting the development board, we can see that the device is online in
the lighting app. We can also set the component Settings in the lighting app and

check the temperature and humidity in the lighting app:

= @ O

s FTAIRE

DHT11:R: 28R

145/152

WAV
ZHIYISBE

DHTILEEEET M =

[iEes =

Biker A 156

nFE i] 6] B it HEH =i

For example, for our humidity data, the data key name is humi defined before
the code, the display text is humidity, the unit is %, the maximum value is 100; The

same goes for setting the temperature.

146/152

VA
ZHIYIZE

A miE

BHRE

Hitig &

HiERE
ERXA
Eei=L v
BAE
ErER
EtrERe

BRIEE

{ humi

%

|
EL]
|
|

[100

| i

Finally, normal temperature and humidity are displayed, as shown in the figure:

blinker A1

o, P
§ = § 289 mem
[] -4 [] i

147/152

X

ZHIYISBE

Lesson 28 ESP8266 Nodem combined with
HC-SR04 Ultrasonic Ranging

In this course, we will use ESP8266 Nodem combined with HC-SR04 ultrasonic

sensor module to build ranging tools.

28.1 Ultrasonic transducer

The principle of ultrasonic ranging is the ultrasonic pulse emitted by the
ultrasonic probe, transmitted to the surface of the object through the medium (air),
reflected through the medium (air) to receive the probe, measured the ultrasonic
pulse from the transmission to receive the required time, according to the speed of
sound in the medium, obtained from the probe to the surface of the distance
between the object. If the distance between the probe and the surface of the object
is L, the propagation speed of ultrasonic in the air is V, and the propagation time
from transmitting to receiving is T, then L=vt/2. Thus it can be seen that there is a
definite functional relationship between the measured distance L and the
propagation time. As long as the time T can be measured, the distance L can be

calculated, and the value of L can be directly displayed on the monitor by software.

Start Pulso v
JL— T
«— L

Echo Time Pulsejr' Sonar TX 4[”””“”““

Vss —b{ |‘—ffi|¥s'

148/152

28.2 Wiring Diagram

28.3 Explanation of working Code:

The hC-SR04 ultrasonic sensor and ESP8266 were used to obtain the distance

from the object

First, define the trigger and echo pins.

const int trigPin 12

const int echoPin 14

In this example, we use generic I/0O 12 and generic I/0O 14. You can also modify

other GPIO pins as you like.

This sound velocity variable preserves the speed of sound in air at 202C. We use

values in cm/us.

149/152

ZHIYISE

#tdefine SOUND_SPEED ©.034

The CM_TO_INCH variable allows us to convert a distance in centimeters to

inches.

#define CM_TO_INCH ©.393701

Then, initialize the following variables.

long duration;
float distanceCnm;

float distancelnch;

The duration variable holds the propagation time of the ultrasonic wave (the
time elapsed since the pulse wave was sent and received). The distanceCm and

istancelnch, as the name implies, save distances to objects in centimeters and inches.

setup()

In setup (), initialize the serial communication at 115200 baud rate so that we can print the
measurements on the serial monitor.
Serial.begin(115200); // Starts the serial communication

Define the trigger pin as the output -- the trigger pin emits ultrasonic
waves. An echo pin is defined as an input-echo pin that receives reflected

waves and sends a signal proportional to the travel time to ESP8266.

pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output

pinMode(echoPin, INPUT); // Sets the echoPin as an Input

loop()
In loop (), the following line produces a 10uS HIGH pulse on the trigger pin --
which means that the pin emits ultrasonic waves. Note that before sending the

pulse, we give a short low pulse to ensure that you will get a clean high pulse.
150/152

ZHIYISE

// Clears the trigPin

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

// Sets the trigPin on HIGH state for 10 micro seconds
digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

We use the pulseln() function to obtain the propagation time of sound waves:
duration = pulselIn(echoPin, HIGH);

The LOW () function reads a HIGH or LOW pulse from a pin. It accepts pins and
pulse states (HIGH or LOW) as parameters. It returns the pulse length in
microseconds. The pulse length is equal to the time it takes to reach the object
plus the time it takes to return.

Then, we simply calculate the distance to an object considering the speed of

sound.

distanceCm = duration * SOUND_SPEED/2;
Convert distance to inches:

distanceInch = distanceCm * CM_TO_INCH;
Finally, the results are printed on a serial monitor.

Serial.print("Distance (cm): ");
Serial.println(distanceCm);
Serial.print("Distance (inch): ");

Serial.println(distanceInch);

Upload the code to your board. Don't forget to select the board you are using in
the tool >; The board. Also, don't forget to use Tools & GT; Select the correct

151/152

ZHIY IS8

COM port from port.

After the upload, open the Serial Monitor at baud rate 115200. Press the
on-board RST button to restart the board and it will begin printing the distance

to the nearest object on the serial monitor. As shown in the figure below.

& com3 - O by

| Send

em) ¢ 1.56 A
anich): .62

cm) ¢ 792

inch): 312

cm): 9.44

ek s S

Distance (
(
(
(
(
(

Distance (cm)y: 8.33
(
(
(
(
(
(
(

Distance
Distance
Distance
Distance

Distance

yach): 3028
cm) : 9.49
¥riech): 303
cm) : 9.89
inch): 3.90
o]z 2858
sty J90

Distance
Distance
Distance
Distance
Distance
Distance

Distance

W

Autoscroll [] Show timestamp :Neu';llm;e v :115213U-Eaua v | | Clear output

152/152

	Lesson 1 Installing I
	1.1 Introduction
	1.2 Installing Arduino
	1.3 Installing Libraries
	1.4 Arduino
	1.5 Introduction to RGB Nano

	Lesson 2 Light LED
	2.1 Overview
	2.2 working principle
	2.3 Connection description
	2.4 Code explanation
	2.5 Upload code

	Lesson 3 Button control LED
	3.1 Overview
	3.2 Connection description
	3.3 Code explanation

	 Lesson 4 active buzzer
	4.1 Overview
	4.2 Connection description
	4.3 Code explanation

	Lesson 5 passive buzzer
	5.1 Overview
	5.2 Connection description
	5.3 Code explanation

	Lesson 6 Traffic Light
	6.1 Overview
	6.3 Wiring schematic
	6.4 Code explanation

	Lesson 7 Running water light
	7.1 Overview
	7.3 Wiring schematic
	7.4 Code explanation

	Lesson 8 WS2812B
	8.1 Overview
	8.2 working principle
	8.3 Characteristics

	8.4 Wiring schematic
	8.5 Code explanation

	Lesson 9 Gradient RGB
	9.1 Overview
	9.2 Working principle

	9.3 Wiring schematic
	9.4 Code explanation

	Lesson 10 DS1307
	10.1 Overview
	10.2 LCD1602 Introduction
	10.3 DS1307 Introduction

	10.4 Wiring schematic
	10.5 Code explanation

	Lesson 11 Show temp
	11.1 Overview
	11.2 Analog Temperature Sensor Introduction
	11.3 Wiring schematic
	 11.4 Code explanation

	Lesson 12 Show temp and humi
	12.1 Overview
	12.2 Wiring schematic
	12.3 Code explanation

	Lesson 13 Ultrasonic module
	13.1 Overview
	13.2 Ultrasonic sensor Introduction
	13.3 Wiring schematic
	 13.4 Code explanation

	Lesson 14 Photosensitive resistance
	14.1 Overview
	14.2 Component Introduction
	14.3 Connection Diagram
	14.4 Wiring schematic
	14.5 Code explanation

	 Lesson 15 Rotary encoder control RGB
	15.1 Overview
	15.2 Project wiring diagram
	15.3 Code explanation

	 Lesson 16 NRF24L01 launch
	16.1 Overview
	16.2 Project wiring diagram
	16.3 Code explanation

	 Lesson 17 Infrared control LED
	17.1 Overview
	17.2 Project wiring diagram
	17.3 Code explanation

	Lesson 18 Infrared control RGB
	18.1 Overview
	18.2 Project wiring diagram
	18.3 Code explanation

	 Lesson 19 Bluetooth control RGB
	19.1 Overview
	19.2 Connection description
	19.3 Code explanation
	19.4 Bluetooth remote control

	Lesson 20 ESP8266 Development board
	20.1 introduction:
	The ESP8266 is a Wi-Fi module ideal for Internet o
	20.2 ESP8266 specifications
	20.3 ESP8266 version
	20.4 NodeMCU pin arrangement peripherals
	20.5 What pins are used in NODEMCU ESP8266?

	Lesson 21 Installing the ESP8266 development board
	21.1 Install the ESP8266 plug-in in the Arduino ID
	21.2 Test the installation
	21.3 Wiring Diagram

	Lesson 22 ESP8266 NodeMCU WiFi control traffic lig
	22.1 Asynchronous Network Server
	22.2 Schematic Diagram:
	22.3 Wiring Diagram
	22.4 ESP asynchronous Web server code
	22.5 How the code works

	Lesson 23 ESP8266 Node MCU button control LED
	23.1 ESP8266 NodeMCU controls digital output
	23.2 Project example
	23.3 Wiring diagram:
	23.4 Working Code:
	23.6 Upload code
	23.7 Object diagram:

	Lesson 24 ESP8266 Controlling LED Brightness (PWM)
	24.1 ESP8266 NodeMCU PWM
	24.2 Schematic diagram:
	24.3 Upload code:
	24.4 Wiring Diagram:

	Lesson 25 ESP8266 Node MCU Web Server Control LED
	25.1 Working Code:
	25.2 Code working principle:
	25.3 Build a web page
	25.4 Web server Demo

	Lesson 26 ESP8266 controls WS2812 lights via Blink
	26.1 Arduino configuration
	26.2 Working Code:
	26.3 App Connection Configuration
	26.4 The wiring diagram:

	Lesson 27 ESP8266 Nodemcu displays temperature and
	27.1 DHT11 Sensor:
	27.2 Install the library
	27.3Working code explanation:
	27.4 Wiring Diagram

	Lesson 28 ESP8266 Nodem combined with HC-SR04 Ultr
	28.1 Ultrasonic transducer
	28.2 Wiring Diagram
	28.3 Explanation of working Code:

