
IOT Training Kit

20210904.V1

Directory

Lesson 1 Installing IDE.. 1

1.1 Introduction..1

1.2 Installing Arduino... 3

1.3 Installing Libraries...6

1.4 Arduino...8

1.5 Introduction to RGB Nano..8

Lesson 2 Light LED.. 11

2.1 Overview...11

2.2 working principle..11

2.3 Connection description.. 12

2.4 Code explanation..12

2.5 Upload code... 13

Lesson 3 Button control LED...15

3.1 Overview...15

3.2 Connection description.. 15

3.3 Code explanation..15

Lesson 4 active buzzer..17

4.1 Overview...17

4.2 Connection description.. 17

4.3 Code explanation..18

Lesson 5 passive buzzer..19

5.1 Overview...19

5.2 Connection description.. 19

5.3 Code explanation..20

Lesson 6 Traffic Light.. 21

6.1 Overview...21

6.2 working principle..21

6.3 Wiring schematic..22

6.4 Code explanation..23

Lesson 7 Running water light... 25

7.1 Overview...25

7.2 working principle..25

7.3 Wiring schematic..26

7.4 Code explanation..26

Lesson 8 WS2812B... 28

8.1 Overview...28

8.2 working principle..28

8.3 Characteristics.. 29

8.4 Wiring schematic..30

8.5 Code explanation..30

Lesson 9 Gradient RGB... 32

9.1 Overview...32

9.2 Working principle... 32

9.3 Wiring schematic..33

9.4 Code explanation..34

Lesson 10 DS1307...36

10.1 Overview...36

10.2 LCD1602 Introduction.. 36

10.3 DS1307 Introduction.. 37

10.4 Wiring schematic..38

10.5 Code explanation..38

..40

Lesson 11 Show temp...41

11.1 Overview...41

11.2 Analog Temperature Sensor Introduction..41

11.3 Wiring schematic..42

11.4 Code explanation..42

Lesson 12 Show temp and humi.. 44

12.1 Overview...44

12.2 Wiring schematic..44

12.3 Code explanation..45

Lesson 13 Ultrasonic module... 47

13.1 Overview...47

13.2 Ultrasonic sensor Introduction...47

13.3 Wiring schematic..48

13.4 Code explanation..48

Lesson 14 Photosensitive resistance..50

14.1 Overview...50

14.2 Component Introduction..50

14.3 Connection Diagram...52

14.4 Wiring schematic..53

14.5 Code explanation..53

Lesson 15 Rotary encoder control RGB..55

15.1 Overview...55

15.2 Project wiring diagram... 55

15.3 Code explanation..55

Lesson 16 NRF24L01 launch...57

16.1 Overview...57

16.2 Project wiring diagram... 57

16.3 Code explanation..57

Lesson 17 Infrared control LED...60

17.1 Overview...60

17.2 Project wiring diagram... 60

17.3 Code explanation..61

Lesson 18 Infrared control RGB..63

18.1 Overview...63

18.2 Project wiring diagram... 63

18.3 Code explanation..63

Lesson 19 Bluetooth control RGB...66

19.1 Overview...66

19.2 Connection description.. 66

19.3 Code explanation..67

19.4 Bluetooth remote control...69

Lesson 20 ESP8266 Development board..71

20.1 introduction:...71

The ESP8266 is a Wi-Fi module ideal for Internet of Things and home

automation projects. This article is a beginner's guide to the ESP8266

development board..71

20.2 ESP8266 specifications...71

20.3 ESP8266 version... 72

20.4 NodeMCU pin arrangement peripherals..73

20.5 What pins are used in NODEMCU ESP8266?....................................... 73

Lesson 21 Installing the ESP8266 development board in the Arduino IDE..........75

21.1 Install the ESP8266 plug-in in the Arduino IDE.................................... 75

21.2 Test the installation.. 78

21.3 Wiring Diagram...80

Lesson 22 ESP8266 NodeMCUWiFi control traffic light module.........................81

22.1 Asynchronous Network Server...81

22.2 Schematic Diagram:..82

22.3 Wiring Diagram...83

22.4 ESP asynchronous Web server code...85

22.5 How the code works...90

Lesson 23 ESP8266 Node MCU button control LED...101

23.1 ESP8266 NodeMCU controls digital output....................................... 101

23.2 Project example..101

23.3 Wiring diagram:..102

23.4 Working Code:..102

23.5 ..103

23.6 Upload code... 105

23.7 Object diagram:..105

Lesson 24 ESP8266 Controlling LED Brightness (PWM).....................................106

24.1 ESP8266 NodeMCU PWM.. 106

24.2 Schematic diagram:..108

24.3 Upload code:.. 110

24.4 Wiring Diagram:..110

Lesson 25 ESP8266 Node MCUWeb Server Control LED Brightness (PWM).... 111

25.1 Working Code:..112

25.2 Code working principle:... 116

25.3 Build a web page.. 117

25.4 Web server Demo...125

Lesson 26 ESP8266 controls WS2812 lights via Blinker..................................... 126

26.1 Arduino configuration.. 126

26.2 Working Code:..128

26.3 App Connection Configuration...134

26.4 The wiring diagram:..139

Lesson 27 ESP8266 Nodemcu displays temperature and humidity in combination

with Blinker...140

27.1 DHT11 Sensor:..140

27.2 Install the library..141

27.3Working code explanation:... 141

27.4 Wiring Diagram...144

Lesson 28 ESP8266 Nodem combined with HC-SR04 Ultrasonic Ranging.........148

28.1 Ultrasonic transducer...148

28.2 Wiring Diagram...149

28.3 Explanation of working Code:.. 149

1/152

Lesson 1 Installing IDE

1.1 Introduction

The Arduino Integrated Development Environment (IDE) is the software side of

the Arduino platform.

In this lesson, you will learn how to setup your computer to use Arduino and

how to set about the lessons that follow.

The Arduino software that you will use to program your Arduino is available for

Windows, Mac and Linux. The installation process is different for all three platforms

and unfortunately there is a certain amount of manual work to install the software.

STEP 1: Go to https://www.arduino.cc/en/software.

The version available at this website is usually the latest version, and the actual

version may be newer than the version in the picture.

2/152

STEP2 ： Download the development software that is compatible with the

operating system of your computer. TakeWindows as an example here.

Click Windows Installer.

Click JUST DOWNLOAD.

Also version 1.8.9is available in the material we provided, and the versions of

our materials are the latest versions when this course was made.

3/152

1.2 Installing Arduino

Click I Agree to see the following interface.

4/152

Click Next

You can press Browse… to choose an installation path or directly type in the

directory you want.

Click Install to initiate installation.

5/152

Finally, the following interface appears, click Install to finish the installation.

Next, the following icon appears on the desktop.

Double-click to enter the desired development environment.

6/152

Installing Arduino (Mac OS X)

Download and Unzip the zip file, double click the Arduino.app to enter Arduino

IDE; the system will ask you to install Java runtime library if you don’t have it in your

computer. Once the installation is complete you can run the Arduino IDE.

Installing Arduino (Linux)

You will have to use the make install command. If you are using the Ubuntu

system, it is recommended to install Arduino IDE from the software center of

Ubuntu.

Installing Additional Arduino Libraries.Once you are comfortable with the

Arduino software and using the built-in functions, you may want to extend the ability

of your Arduino with additional libraries.

1.3 Installing Libraries

Libraries are a collection of code that makes it easy for you to connect to a

sensor, display, module, etc. For example, the built-in Liquid Crystal library makes it

easy to talk to character LCD displays. There are hundreds of additional libraries

available on the Internet for download. The built-in libraries and some of these

additional libraries are listed in the reference. To use the additional libraries, you will

need to install them.

How to Install a Library?Using the Library Manager.To install a new library into

your Arduino IDE you can use the Library Manager (available from IDE version 1.8.9).

Open the IDE and click to the "Sketch" menu and then Include Library > Manage

Libraries.

7/152

and then Include Library > Manage Libraries.

Example: IRromote

Open Arduino software - project - load library - add a .zip library.

Add method two:

Copy the library folder to the Libraries folder in the Arduino installation

directory. Restart Arduino and the added library will take effect.

8/152

1.4 Arduino

Arduino is an open source electronic platform based on easy-to-use hardware

and software.Suitable for anyone working on interactive projects. Usually, an Arduino

project consists of circuits and codes.

The Arduino board is a circuit board that integrat es a microcont roller, input

and out put interfaces, etc.The Arduino board can use sensor s t o sense the

environment and receive user operations to control LED s,, and so on. We just need

to assemble the circuit and write the code.Currently,t here are several models of

Arduino development boards, and the codes between different types of

development boards are common (due to different hardware, some development

boards may not be fully compatible). Popular main control boards include.

1.5 Introduction to RGB Nano

The 14 digital ports of RGB Nano can be used as digital input or output, defined

by pinmode() in the program, and controlled by digitalwrite and digitalread()

function blocks. They work at 5V. Each port provides output current or receives 40

mA current. There is a pull-up resistor inside with a resistance value of 20-50 kOhms.

Other terminals have special definitions.

Serial: 0 (Rx) and 1 (TX). Used to receive (Rx) and transmit (TX) TTL serial data.

External interrupt: terminals 2 and 3. These external interfaces can be

configured to generate interrupts later, can be triggered when an external low level

occurs, or when a rising edge and a falling edge occur. For more information, see the

attachinterrupt() function.

PWM: 3, 5, 6, 9, 10, 11, provide 8-bit PWM output, use the analogwrite()

function.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication. Although the hardware supports them, they are not included in the

Arduino software.

Led: 2-13, built-in LED, connected to pin 2-13, when this pin outputs high

9/152

voltage, the LED is on, when outputting low voltage, the LED is off.

button: 2, is a built-in button, connected to pin 2, this pin can be used as a

pull-up input, when the software is configured, it can detect whether the button is

pressed.

buzzer: 8 is the built-in pin, connected to pin 8. A passive buzzer module is

connected to this pin. When this pin outputs a frequency level, the buzzer can make

a different sound.

RGB: 13 is a built-in pin, connect to pin 13, this pin integrates WS2812RGB light,

you can use software configuration to make it emit different colors

RGB Nano has eight analog inputs, each with a resolution of 10 bits (ie 1024

different possibilities). By default, the measured voltage to ground is 5V. Of course,

its upper limit can also be modified by the analogreference() function. Analog pins 6

and 7 cannot be used as digital ports. In addition, some ports have many special

functions.

I2C: A4 (SDA) and A5 (SCL). There are other ports on the board.

Aref: Reference voltage of analog input, used with ananlogreference().

Reset: Pull down the potential and reset the microprocessor. After pressing the

button, the whole system can be reset.

10/152

11/152

Lesson 2 Light LED

2.1 Overview

Through this project, you can learn how to use RGB Nano to light up a 10mm

LED module. After downloading the program and connecting the line, you will see

that the LED light is successfully lit. If it is not lit, you need to check whether the line

is correctly connected and check whether the pin number of the connected micro

controller corresponds to it.

2.2 working principle

LED (Light Emitting Diode), which converts electrical energy into light energy,

also has unidirectional conductivity and a reverse breakdown voltage of about 5V. Its

forward volt-ampere characteristic curve is very steep, and the current-limiting

resistor must be connected in series. In a 5V circuit, a resistor of about 400 ohms is

generally used. The longer of the two pins of the LED is the positive pole. There are

two ways to connect, when the positive pole of the led through the current limiting

resistor and Arduino.The I/O port is connected and the other end is grounded. At this

time, when the Arduino output is high, the led is lit, and when the output is low, the

led is off.

When the negative pole of the led is connected to the I/O port of the Arduino,

the other end is connected to the 5V voltage through the current limiting+ resistor.

At this time.

When the output is low, the led is lit, and when the output is high, the led is off.

12/152

If you do not use a resistor with an LED, then it may well be destroyed almost

immediately, as too much current will flow through, heating it and destroying the

'junction' where the light is produced.

There are two ways to tell which is the positive lead of the LED and which the

negative.

Firstly, the positive lead is longer.

Secondly, where the negative lead enters the body of the LED, there is a flat

edge to the case of the LED.

If you happen to have an LED that has a flat side next to the longer lead, you

should assume that the longer lead is positive.

2.3 Connection description

Use the dupont line to lead the D13 pin of the micro controller to any interface

of the JP12 header, plug it in, and the line is successfully connected.The wiring

diagram is as follows.

2.4 Code explanation

Define LED signal enable pin.

13/152

Function initialization, define 13 pin as output.

Main function, let 13 pin output high level.

2.5 Upload code

Choose NANO development board.

14/152

Select port.

Click compile.

Click upload.

15/152

Lesson 3 Button control LED

3.1 Overview

Through this project, you can learn how to use the input of the RGB Nano

control button to light up a 10mm LED light. After downloading the program and

connecting the line, you need to press the WS1 button. After pressing it, you will see

the LED light is successfully lit. After pressing it again, the LED light will go out. If it is

not lit and extinguished, you need to check whether the circuit is correctly connected,

and check whether the pin number of the connected microcontroller corresponds to

it.

3.2 Connection description

Use DuPont wire to lead the D13 pin of the single-chip microcomputer to any

interface of the JP12 header, plug it in and the connection is successful, connect the

D2 pin of the single-chip microcomputer to the S port on the header JP1, and the

button wiring is also completed.The wiring diagram is as follows.

3.3 Code explanation

16/152

Define LED signal enable pin.

Define global variables, which are used as flag bits for buttons and LEDs, function

initialization, define 13 pin as output, and define 2 pin as input State.

The main function is to judge whether the button is pressed, after pressing it, judge

whether it has been pressed according to the flag bit, and determine whether the

LED is lit or extinguished according to the flag bit.

17/152

Lesson 4 active buzzer

4.1 Overview

Through this project, you can learn how to use RGB Nano to make the active

buzzer sound an alarm. After downloading the program and connecting the line, you

will hear an alarm sound from the buzzer. If the buzzer does not sound, you need to

check whether the circuit is correctly connected, and check whether the pin number

of the connected micro controller corresponds to it.

4.2 Connection description

Connect the D3 pin of the single-chip microcomputer to the S interface of the

JP7 row seat with a Dupont cable, and the connection is successful when it is plugged

in.The wiring diagram is as follows

18/152

4.3 Code explanation

Definition Active buzzer signal enable pin is the third pin.

The function is initialized, and pin 3 is defined as output.

The main function allows the micro controller to output a high level of 500MS and

then a low level of 500MS, so that the active buzzer can sound an alarm.

19/152

Lesson 5 passive buzzer

5.1 Overview

Through this project, you can learn how to use RGB Nano to make a passive

buzzer sound an alarm. You can hear the sound after downloading the program. This

is emitted by the passive buzzer, which is emitted once every 0.5S.

5.2 Connection description

No wiring is required in this lesson, because the passive buzzer has been

integrated on the RGB Nano, and the corresponding pin of the passive buzzer is pin

D8. If there is no sound when downloading the program, check whether there is a

swing switch above the buzzer Turn on, this swing switch is the connection switch

between the D8 pin and the passive buzzer, here you need to pay attention!The

wiring diagram is as follows.

20/152

5.3 Code explanation

Define the passive buzzer signal enable pin as the D8 pin.

A global flag is defined, and the function is initialized at the same time, and pin

8 is defined as an output.

The main function is to make the single-chip microcomputer output a level

frequency, which can make the passive buzzer sound. After a period of time, the

passive buzzer can make an alarm sound. If you want to make the passive buzzer

sound all the time , You can make the "beep_bit" variable always wait for 0.

21/152

Lesson 6 Traffic Light

6.1 Overview

Above, we have completed the control experiment of a single small light. Next,

let's do a slightly more complex traffic light experiment. In fact, smart friends can see

that this experiment is to expand the experiment of a single small light into 3

colors,which can achieve our simulation of the traffic light experiment.

6.2 working principle

Signal light is an important part of traffic signal, and it is the basic language of

road traffic.

The traffic signal light consists of a red light (indicating no passage), a green light

(indicating permission to pass) and a yellow light (indicating a warning).

It is divided into: motor vehicle signal light, non-motor vehicle signal light,

pedestrian crossing signal light, lane signal light, direction indicator signal light,

flashing warning signal light, road and railway plane crossing signal light.

Road traffic signal lamp is a category of traffic safety products, is to strengthen

the road traffic management, reduce the occurrence of traffic accidents, improve the

efficiency of road use, improve traffic conditions of an important tool.

It is suitable for crossing, T-word and other intersections. It is controlled by road

traffic signal control machine to guide the safe and orderly passage of vehicles and

pedestrians.

22/152

6.3 Wiring schematic

23/152

6.4 Code explanation

Set the number 2,3,4 ports to output mode as they are connected to the LED

positive terminal.

Set digital pin 2 to high and the rest to low with a delay of 5 seconds, leaving the

green light on for 5 seconds.

The green light flashes every 500 milliseconds for a total of three times

24/152

Turn on the yellow light and turn off the red and green light for 1 second.Then the

red light goes on for five seconds.

The red light flashes three times every 500 milliseconds.

25/152

Lesson 7 Running water light

7.1 Overview

In this course, you will learn how to control the led on and off to achieve the

flow light function.

7.2 working principle

mall light on RGB-Nano, and can realize the function of light on, off and flashing,

and the LED flashing time is set by itself.

When the pin output is low, the LED light will not be lit, when the pin output is

high, the LED light will be lit.

Multiple pin controls are required, so digital pins 2 through 13 are used here.

Control the light on and off time respectively, you can achieve the effect of

water lamp.

Running water light effect: all the lights go out, and then lit one by one to the

left, to carry out one by one to the right and faster at the beginning, as the change of

time, more and more slow, to reach the slowest time flow will become soon, this

process is circular, of course can also be other effects, can be set for yourself.

26/152

7.3 Wiring schematic

7.4 Code explanation

Define two time variables, and then set pins 2 through 13 to output mode.

From the second light on for a period of time, then off for a period of time.

Turn on the third light, wait a while, turn off the third light, then turn on the fourth

light, and so on.

27/152

From the 13th light on, wait for a period of time to turn off the 13th light, let the

twelfth light on, wait for a period of time, turn off the second light, continue to light

and turn off the next light.

28/152

Lesson 8 WS2812B

8.1 Overview

WS2812B is a chip with a built-in LED driver. One IO port can control multiple

LEDs, brightness adjustment, color adjustment and other functions.

8.2 working principle

WS2812B is an intelligent external controlled LED light source integrating control

circuit and luminous circuit.

The shape is the same as a 5050 LED lamp bead, and each element is a pixel

point.

The pixel contains an intelligent digital interface data latch signal shaping

amplifier drive circuit, also contains a high-precision internal oscillator and 5V voltage

programmable fixed current control part, effectively ensure the pixel light color

highly consistent.

The data protocol adopts the communication mode of single-line return to zero

code. After the pixel is powered on and reset, the DIN end accepts the data

transmitted from the controller. The first sent 24bit data is extracted by the first pixel

and sent to the data latch inside the pixel.

After internal shaping and circuit shaping, the remaining data is amplified and

forwarded to the next cascaded pixel through the DO port. Every transmission of a

pixel, the signal is reduced by 24bit.

Automatic shaping and forwarding technology is adopted for pixels, so that the

number of cascaded pixels is not limited by signal transmission, but only limited by

signal transmission speed.

RGB is integrated on the development board, and the control pin of the RGB

light is connected to pin 13 of the RGB-Nano board.

29/152

8.3 Characteristics

1. The control circuit and RGB chip are integrated in a 5050 package component,

forming a complete external control pixel point.

2. Built-in signal shaping circuit, any pixel after receiving the signal through the

waveform .

3.Type output, ensure that the line waveform distortion will not accumulate.

4. Built-in power on reset and power off reset circuit.

5. The three primary colors of each pixel can achieve 256-level brightness

display, complete the full true color display of 16777216 colors, and the scanning

frequency is not less than 400Hz/s.

6. Serial level connection port, through a signal line to complete the data

reception and decoding.

7. Any two-point transmission distance does not need to increase any circuit

when it is less than 5 meters.

8. When the refresh rate is 30 frames/SEC, the cascade number of low speed

mode is not less than 512 points, and high speed mode is not less than 1024 points.

Data transmission speed up to 800Kbps.

9.The color of the light is highly consistent and cost-effective.

30/152

8.4 Wiring schematic

8.5 Code explanation

Reference to the library that drives the WS2812B RGB light, because the RGB

light signal pin is connected to the development board processor pin 13, so the math

pin 13 definition is connected to the RGB signal pin.

Some Settings need to be initialized, such as the baud rate of the serial port is set to

9600 and the RGB light function is initialized.

31/152

Call the clear function first, and in the for loop, turn the first light on and set the

color to green.

Because we have 12 lights, so we're going through 12 cycles.

32/152

Lesson 9 Gradient RGB

9.1 Overview

WS2812B is a built-in LED driver chip.In this course, you will learn how to

control multiple leds, brightness adjustment, color adjustment, and other functions

from one IO port.

9.2 Working principle

WS2812B is an intelligent external controlled LED light source integrating control

circuit and luminous circuit.

The shape is the same as a 5050 LED lamp bead, and each element is a pixel

point.

The pixel contains an intelligent digital interface data latch signal shaping

amplifier drive circuit, also contains a high-precision internal oscillator and 5V voltage

programmable fixed current control part, effectively ensure the pixel light color

highly consistent.

The data protocol adopts the communication mode of single-line return to zero

code. After the pixel is powered on and reset, the DIN end accepts the data

transmitted from the controller. The first sent 24bit data is extracted by the first pixel

and sent to the data latch inside the pixel.

After internal shaping and circuit shaping, the remaining data is amplified and

forwarded to the next cascaded pixel through the DO port. Every transmission of a

pixel, the signal is reduced by 24bit.

33/152

Automatic shaping and forwarding technology is adopted for pixels, so that the

number of cascaded pixels is not limited by signal transmission, but only limited by

signal transmission speed.

RGB is integrated on the development board, and the control pin of the RGB

light is connected to pin 13 of the RGB-Nano board.

9.3 Wiring schematic

34/152

9.4 Code explanation

Reference to the library that drives the WS2812B RGB light, because the RGB

light signal pin is connected to the development board processor pin 13, so the math

pin 13 definition is connected to the RGB signal pin.Since there are 12 lights, the

number of all leds is set to 12 in the program.

Do some initial setup.

Call the rainbow function with a parameter of 2 milliseconds, which represents the

time delay for each gradient, and call the RGB function after the gradient ends.

35/152

36/152

Lesson 10 DS1307

10.1 Overview

In many electronic devices, operations must be run according to time.

When the main system is down, you should not stop calculating the time and

date for devices such as computers, mobile phones, etc.

Therefore, the real-time clock (RTC) module is adopted.

In this section, you will learn how to use the RTC DS1307 module and the

RGB-Nano development board to make a time prompter displayed by the LCD screen.

10.2 LCD1602 Introduction

Introduction to the pins of LCD1602:

VSS: A pin that connects to ground.

VDD: A pin that connects to a +5V power supply.

VO: A pin that adjust the contrast of LCD1602.

RS: A register select pin that controls where in the LCD’s memory you are writing

data to. You can select either the data register, which holds what goes on the screen,

or an instruction register, which is where the LCD’s controller looks for instructions

on what to do next.

R/W: A Read/Write pin that selects reading mode or writing mode

E: An enabling pin that, when supplied with low-level energy, causes the LDC

module to execute relevant instructions.

D0-D7：Pins that read and write data.

A and K: Pins that control the LED backlight.

37/152

10.3 DS1307 Introduction

DS1307 is a low power, with 56 bytes of non-volatile RAM full BCD code clock

calendar real-time clock chip, address and data transmission through a two-wire

bidirectional serial bus, the chip can provide seconds, minutes, hours and other

information, the days of each month can be automatically adjusted.It also has leap

year compensation.

The Real Time Clock, or RTC, is a system that tracks the current Time and can be

used with any device that needs to maintain an accurate Time.

You can also track the exact time without using an RTC system, but RTC has

some important advantages.

Here are some of them:

Release system time from time calculations (this feature is critical because in

many cases the CPU is performing delicate tasks such as receiving sensor data.

If you do not use RTC, the CPU must also track time and it may interrupt the

processor main task.

RTCS usually have a backup power supply, use CR2025 button batteries, so they

can continue for a period of time when the main power supply is off or

unavailable.RTC usually uses a 32.768khz crystal oscillator.But why 32,768? 32,768 is

2 to the 15th, so you can easily generate 1 second.In addition, the crystal must be

small, moderate width, low power consumption, 32876 Hz can meet the

requirements.

The higher the frequency, the weaker the crystal, and the lower the frequency,

the greater the power consumption.

38/152

10.4 Wiring schematic

10.5 Code explanation

Declare some drive LCD display and DS1307 clock chip library, call these

libraries .is our programming more simple and convenient, define the LCD display

and development board connected pins, are digital port 7,8,9,10,11,12 pins.

(Note: When uploading the code, first change the existing code

"DS1307_Write.ino" to correspond to the local time. After uploading the code,

upload the code "DS1307_Write.ino" successfully, and then upload the code

"DS1307.ino" successfully After uploading, the normal local time will be displayed.)

Before the program starts to run, you need to set some initialization Settings, the

baud rate of the serial port, the initialization of the display.

39/152

Call the function of DS1307,You need to write the date into DS1307 and then read

the data.

Print the date and time in the serial port.

40/152

41/152

Lesson 11 Show temp

11.1 Overview

In this lesson, you will learn how to use the LCD 1602 display to display

temperature information.

The display is back lit by leds and can display two lines of up to 16 characters

each.

You can see the rectangles of each character and the pixels that make up each

character on the monitor.

The monitor is blue and white and is used to display text.

In this lesson, we will run the LCD library's RGB-Nano board temperature display

routine.

11.2 Analog Temperature Sensor Introduction

A thermistor is a type of resistor whose resistance is dependent on temperature,

more so than in standard resistors. The word is a portmanteau of thermal and

resistor. Thermistors are widely used as inrush current limiter, temperature sensors

(NTC type typically), self- resetting overcurrent protectors, and self-regulating

heating elements.

Specification：

Model No: NTC-MF52 3950

3Pin

Temperature Range : ~55℃~+125℃

Accuracy :+/-0.5℃

Pull-up resistor : 10KΩ

42/152

PIN CONFIGURATION:

1、“S”: GND

2、“+” : +5V

3、“-” :Singal pin

11.3 Wiring schematic

11.4 Code explanation

Call LCD display library, define analog interface A0 to connect analog

temperature sensor. Define the pins that connect the LCD display to the

development board as digital ports 7, 8, 9, 10, 11, 12.

43/152

The serial port baud rate is set to 9600, and the LCD screen is initialized.

The simulated data of the simulated temperature sensor is obtained and displayed

on the serial port debugging window and LCD screen after calculation.

44/152

Lesson 12 Show temp and humi

12.1 Overview

In this lesson, you will learn how to connect and use a display screen to display

data measured by a temperature and humidity sensor.

The display has LED backlighting and can display two lines of up to 16 characters

each.

You can see the rectangles of each character and the pixels that make up each

character on the monitor.

The display is blue and white and is used to display text.

In this lesson, we will run the LCD library's RGB-Nano sample program for

measuring temperature and humidity.

12.2 Wiring schematic

45/152

12.3 Code explanation

Invoke the library of the T/H sensor (DHT11) and LCD display and define the

processor number 2 to connect to the T/H sensor.define the LCD display and

development board connected pins, are digital port 7,8,9,10,11,12 pins.

The serial port baud rate is set to 9600, the DHT11 sensor is initialized, and the

LCD screen is initialized.

46/152

Obtain the humidity and temperature data of the sensor and display them in real

time on the serial port debugging window and LCD screen.

47/152

Lesson 13 Ultrasonic module

13.1 Overview

In this lesson, you will learn how to connect and use ultrasonic ranging sensors

and LCD 1602 displays.

The display has LED backlighting and can display two lines of up to 16 characters

each.

You can see the rectangles of each character and the pixels that make up each

character on the monitor.

The display is blue and white and is used to display text.

In this lesson, we will run the RGB-Nano sample program to display the

ultrasonic sensor measurement distance information on the LCD 1602 display.

13.2 Ultrasonic sensor Introduction

Ultrasonic sensor module HC-SR04 provides 2cm-400cm non-contact

measurement function, the ranging accuracy can reach to 3mm. The modules

includes ultrasonic transmitters, receiver and control circuit. The basic principle of

work:

Using IO trigger for at least 10us high level signal,

The Module automatically sends eight 40 kHz and detect whether there is a

pulse signal back.

IF the signal back, through high level , time of high output IO duration is the

time from sending ultrasonic tore turning.

Test distance = (high level time × velocity of sound (340m/s) /2.

You only need to supply a short 10us pulse to the trigger input to start the

ranging, and then the module will send out an 8 cycle burst of ultrasound at 40 kHz

and raise its echo. The Echo is a distance object that is pulse width and the range in

proportion .You can calculate the range through the time interval between

sending trigger signal and receiving echo signal. Formula: us / 58 = centimeters or us

48/152

/ 148 =inch; or: the range = high level time * velocity (340M/S) / 2; we suggest to use

over 60ms measurement cycle, in order to prevent trigger signal to the echo

signal.

13.3 Wiring schematic

The data measured by the ultrasonic sensor module HC-SR04 is processed by

the RGB-Nano board, and the data is displayed on the LCD screen.

13.4 Code explanation

Declaration drives LCD screen library, ultrasonic sensor module HC-SR04

interface.

49/152

Initialize the serial port and screen, and set theultrasonic sensor module

HC-SR04 interface .

Obtain the data measured by the ultrasonic sensor module HC-SR04 and display

it in the serial debugging window and LCD screen.

50/152

Lesson 14 Photosensitive resistance

14.1 Overview

Photoinductive resistance, is the use of semiconductor photoelectric effect made

of a resistance value with the intensity of the incident light and change the resistor;

When the incident light is strong, the resistance goes down, when the incident

light is weak, the resistance goes up.

Photosensitive resistors are commonly used for light measurement, light control

and photoelectric conversion (to convert light changes into electrical changes).

14.2 Component Introduction

Photosensitive resistors can be widely used in a variety of light control circuits,

such as light control, regulation and other occasions, can also be used for light

control switches.

In this experiment, we first carried out a relatively simple use experiment of

photosensitive resistance.

Since photosensitive resistor is a component that can change the resistance

value according to the light intensity, it also needs the analog port to read the analog

value naturally. In this experiment, we can learn from the PWM interface experiment

and change the potentiometer into a photosensitive resistor to realize that the

brightness of the LED small lamp will also change accordingly when the light intensity

is different.

The resistance of photosensitive resistors is very high in dark and dark

conditions.

The stronger the light, the smaller the resistance.

51/152

By measuring the voltage change on both sides of the photosensitive resistor,

the change of the photosensitive resistance value can be known and the illumination

intensity value can be obtained.

In the connection diagram, we can find a partial voltage resistor in series for the

photosensitive resistor.

In the figure above, RL is a photosensitive resistor, and R1 is a series resistor. In

the dark, RL is going to be very, very large, so Vout is going to be very large, close to

5V.

The formula is as follows:

Vout =
RL

R1 + RL
∗ Vin

As soon as the light hits, the value of RL decreases rapidly, so Vout decreases with it.

It can be seen from the above formula that the selection of R1 should not be

too small, preferably around 1K ~ 10K, otherwise the ratio will not change

significantly.

52/152

14.3 Connection Diagram

53/152

14.4 Wiring schematic

14.5 Code explanation

Define the photoresistor to connect to analog pin A0 and the LED to connect to

digital pin 4.

When the photoresistor detects that the light is dim, it puts the LED light is on,

so set the pin connecting the LED light to output mode.

54/152

Use the analog reading function to read the data of the photosensitive resistor,

and then take this data as the judgment condition of day and night. If the detected

data is less than 500, it indicates that the current environment has become dark, so

let the pin connected to the LED output high level, and make the LED light up.

55/152

Lesson 15 Rotary encoder control RGB

15.1 Overview

Through this project, you can learn to use a rotary encoder to control the RGB

display running light on the micro controller RGB Nano.

Connection description:

Connect the D13 pin of the single-chip microcomputer to the DIN interface of

the JP15 row with a DuPont cable, and the connection is successful when it is

plugged in. Next, connect the D2 pin of the micro controller to the "CLK" of the JP13

row seat with a Dupont line, connect the D3 pin to the "DT" of the JP3 row seat, and

connect the D4 pin to the "SW" of the JP13 row seat. You can connect successfully.

15.2 Project wiring diagram

15.3 Code explanation

Contains RGB library files, defines the number of RGB lights and pin numbers,

and defines the function pins and the global variables required by the function.

56/152

At the same time, the function is initialized, the work type of the pin is

determined, and the interrupt 1 function is enabled at the same time.

The main function, the value sent by the encoder through the display function to

make the corresponding RGB light be lit. By changing the "count" you can change the

light that is lit

The encoder processing function will determine whether the encoder is rotating

forward or backward, and at the same time change the value of "count".

57/152

Lesson 16 NRF24L01 launch

16.1 Overview

Through this project, you will learn to use NRF24L01 to send data and display it

using the serial port of the IDE compiler.

Connection description:

Connect the D9, D10, D11, D12, and D13 pins of the MCU to the "CSN", "CE"

"MOSI" "MISO" "SCK" on the header below JP3 with DuPont cables, and connect the

NRF24L01 module to the JP3 row at the same time Mother, the connection is

complete, the connection is successful.

16.2 Project wiring diagram

16.3 Code explanation

Contains the library files that the project must use.

58/152

The function pins of the program are defined in the global variable definition

Initialize the function to determine that the working baud rate is "57600". This

needs to be the same as the baud rate of the serial port, otherwise garbled

characters will be generated.

The serial port continuously prints the sent data "data" to download the

program. After connecting the DuPont cable, you can open the debugging window of

the IDE to view it. Pay special attention to setting the baud rate. The default baud

rate is 9600 and needs to be changed to 57600.

59/152

Experimental phenomena.

60/152

Lesson 17 Infrared control LED

17.1 Overview

Through this project, you will learn to use an infrared remote control to

remotely turn on the LED. After downloading the program, connect the DuPont cable

and press the remote control's play button to turn the LED on and off.

Connection description:

Connect D2 of the single-chip microcomputer to pin "S" of JP16 with a DuPont

cable, and connect D13 to any pin of JP12, and the connection is successful.

17.2 Project wiring diagram

61/152

17.3 Code explanation

The initialization of the function and the function pin definition of the function

have been discussed in the previous lessons, but they are all the same, so I won’t

describe them here. I will mainly talk about the infrared processing function. When

the infrared receiving function receives the key value, it will judge. This key value can

be printed through the serial port and viewed in the serial debugger. When the key

value we specified is judged, we define the state of the LED to be inverted, so that

the LED can be turned on and off.

62/152

The button in the red box of the remote control has been set with the specified

function in the program.

63/152

Lesson 18 Infrared control RGB

18.1 Overview

Through this project, you will learn to use an infrared remote control to turn on

RGB remotely. After downloading the program, connect the DuPont cable and press

1, 2, 3, 4, 5, and 6 on the remote control to display five colors of red, green, blue,

yellow, white, and the last one is to turn off RGB.

Connection description:

Connect D2 of the single-chip microcomputer to the pin "S" of JP16 with a

Dupont wire, and connect D13 to the "DIN" pin of JP15, and the connection is

successful.

18.2 Project wiring diagram

18.3 Code explanation

The initialization of the function and the function pin definition of the function

have been discussed in the previous course, but they are the same, so I won't repeat

64/152

them here. I mainly talk about infrared processing functions. When the infrared

receiving function receives the key value, it will judge. This key value can be printed

out through the serial port and viewed in the serial debugger. When the key value we

specify is judged, we define the RGB color corresponding to each number. When the

corresponding number is pressed, the corresponding color will be lit. These key

values can also be customized or Use your own defined number to control the color

of RGB or the number of RGB.

65/152

The button in the red box of the remote control has been set with the specified

function in the program.

66/152

Lesson 19 Bluetooth control RGB

19.1 Overview

Through this project, you will learn to use the mobile phone APP to use

Bluetooth to connect with the Bluetooth module on the board to realize remote

opening of RGB. After downloading the program, connect to the DuPont cable,

connect to Bluetooth, use the mobile APP to connect to Bluetooth, send R, G, B, Y, W,

O through the APP keyboard, and display five colors of red, green, blue, yellow, and

white. The last one One is to turn off RGB. Note that the characters here are all

capitalized in English.

19.2 Connection description

Connect D13 of the single-chip microcomputer to the "DIN" pin of JP15 with a

Dupont line, connect TX on the single-chip microcomputer to RX on JP32, and

connect RX on the single-chip microcomputer to TX on JP32. After all connections are

made, the connection is successful.Project wiring diagram:

67/152

19.3 Code explanation

The initialization of the function and the function pin definition of the function

have been discussed in the previous course, but they are all the same, so I won't

repeat them here. I mainly talk about Bluetooth processing functions. When the

Bluetooth receiver function receives the corresponding character, it will make a

judgment. This character can be printed out through the serial port and viewed in

the serial debugger. When the character value we specify is judged, we define the

RGB color corresponding to each number. When the corresponding number is

pressed, the corresponding color will light up. These keys can also be customized or

use self-defined numbers to control the color of RGB or the number of RGB.

68/152

69/152

19.4 Bluetooth remote control

Equipped with bluetooth serial port assistant for remote control of car;First,

turn on bluetooth and search for Bluetooth devices to find hC-06 connection. The

default connection pairing password is 1234.

Open bluetooth Assistant and find the bluetooth module name hC-06 just

configured. After successful connection, a remote control main interface will appear.

70/152

Select the keyboard mode, after entering, you can enter the characters we

specified. After entering "R", the system will return an "OK" to indicate that our

communication is normal, and you can enter other characters to display different

colors.

71/152

Lesson 20 ESP8266 Development board

20.1 introduction:

The ESP8266 is a Wi-Fi module ideal for Internet of Things and home automation

projects. This article is a beginner's guide to the ESP8266 development board.

20.2 ESP8266 specifications

 11 b/g/n agreement

Wi-Fi Direct (P2P)、soft AP

 Integrates TCP/IP protocol stack

 Built-in low-power 32-bit CPU

 SDIO 2.0、SPI、UART

72/152

20.3 ESP8266 version

The ESP8266 is available in several versions (see figure below). In our opinion,

the ESP-12E or more commonly known as THE ESP-12E NodeMCU suite is the most

practical version available today.

ESP8266 Development board pin schematic diagram:

73/152

20.4 NodeMCU pin arrangement peripherals

NodeMCU peripherals include

17 universal I/O pins

SPI

I2C

A serial port

10 bit ADC

20.5 What pins are used in NODEMCU ESP8266?

The GPIO number does not match the label on the pin diagram. For example, D1

corresponds to GPIO5, D2 corresponds to GPIO5

Can be used as input/output pins without problem

GPIO5 labeled D1 is commonly used as SCL (I2C)

GPIO4 labeled D2 is commonly used as SDA (I2C)

GPIO0 flagged as D3 connects to the FLASH button if pulled low startup fails

GPIO2 marked AS D4 connected to the onboard LED, if pulled low - high at

startup, startup fails

GPIO14 is labeled D5 SPI (SCLK)

GPIO12 is labeled D6 SPI (MISO)

GPIO13 is labeled D7 SPI (MOSI)

ADO is marked as AO

The following are the pins that can be used, but you need to be careful because

they can have unexpected behavior primarily at startup.

 GPIO16 is marked D0 HIGH at startup to wake up from deep sleep

 GPIO15 is marked D8 pull to GND: if we pull high, startup fails

 GPIO3在 boo标记为 RX HIGH

GPIO1 is marked as TX debug output at startup, if pulled down startup fails

74/152

Note:

It is recommended that pins labeled RX and ADO be used as outputs and not TX pins

as inputs.

Pins called GPIO6 through GPIO11 connect to the flash chip in the ESP8266.

Therefore, it is not recommended to use these pins for input/output functions.

If you want to operate relays, GPIO4 and GPIO5 are the safest GPIO pins to use.

75/152

Lesson 21 Installing the ESP8266 development board in

the Arduino IDE

The ESP8266 community has created an add-on for the Arduino IDE that allows

you to program ESP8266 using the Arduino IDE and its programming language.

This tutorial shows how to install the ESP8266 development board in the

Arduino IDE, whether you are using Windows, Mac OS X, or Linux.

Before starting this installation process, make sure you have the latest version

of the Arduino IDE installed on your computer. If not, uninstall it and reinstall it.

Otherwise, it might not work.

You can click on the link:https://www.arduino.cc/en/software Install the latest

Arduino IDE software.

21.1 Install the ESP8266 plug-in in the Arduino IDE

To install the ESP8266 board in your Arduino IDE, follow the instructions below:

In your Arduino IDE, go to file > Preferences.

https://www.arduino.cc/en/software

76/152

Enter it in the Additional Boards Manager URLs field

http://arduino.esp8266.com/stable/package_esp8266com_index.json，As

shown in the figure below. Then, click the ok button:

Note: If you already have ESP32 board urls, you can use commas to separate the urls,

as shown below:

https://dl.espressif.com/dl/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

77/152

Open board Manage.Go to tools→ board→board manager...

Search for ESP8266 and press the install button of "ESP8266 by ESP8266

Community" :

Wait a few seconds to install.

78/152

21.2 Test the installation

To test the ESP8266 plug-in installation, let's see if we can make the LED blink

through the ESP8266 using the Arduino programming language.

Upload a sketch

Upload the sketch to ESP-12E

Plug your development board into your computer. Make sure you choose the

right circuit board:

You also need to select ports:

79/152

Then, copy the supplied code:

int pin = 2;void setup() {

// Initialize GPIO 2 as output.

pinMode(pin, OUTPUT);}// The loop function runs over and over again

void loop() {

digitalWrite(pin, HIGH); // Open the LED

delay(1000); // Delay for a second

digitalWrite(pin, LOW); // Turn off the LED by lowering the voltage

delay(1000); //Delay for a second

}

Click the "Upload" button in the Arduino IDE and wait a few seconds

until you see the "Upload Completed" message. It's in the lower left

corner.

80/152

21.3 Wiring Diagram

When D4 is connected to the green LED pin in the traffic light module,

the LED flashes.

81/152

Lesson 22 ESP8266 NodeMCUWiFi control traffic light

module

In this tutorial, you will learn how to use the ESP8266 NodeMCU

board to build an asynchronous Web server to control its output. The

board will be programmed using the Arduino IDE and we will use the

ESPAsyncWebServer library.

22.1 Asynchronous Network Server

To build a Web server, we'll use the ESPAsyncWebServer library, which provides

an easy way to build an asynchronous Web server.

82/152

22.2 Schematic Diagram:

Before continuing with the code, connect the three leds to the ESP8266. We

connected the LED to GPIO 5, 4 and 2.

83/152

22.3 Wiring Diagram

Installation library - ESP Exotic Web server

To build a Web server, you need to install the following libraries.

 ESPAsyncWebServer
 ESPAsyncTCP
These libraries cannot be installed through the Arduino library

manager, so you need to copy the library files to the Arduino

installation library folder. Or, in your Arduino IDE, you can go

to Sketch > Include Library > Add .zip Library and select the

library you just downloaded.

Project overview

https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncTCP/archive/master.zip

84/152

To better understand the code, let's take a look at how the Web server works.

The Web Server contains a title "ESP Web Server" and three

buttons (toggle switches) to control the three outputs. Each slider

button has a label indicating the GPIO output pin. You can easily

remove/add more output.

When the slider is red, the output is on (its status is HIGH). If you

switch the slider, it will turn off the output (changing the state to LOW).

When the slider is gray, the output is off (its status is LOW). If you

switch the slider, it turns on the output (changing the state to HIGH).

85/152

Let's see what happens when we toggle buttons. We will see an example of

GPIO 2. The other buttons work similarly.

1. In the first case, you toggle the button to turn on GPIO 2. When this happens,

will it update in /? Output = 2 & status = 1 URL. Based on this URL, we change the

state of GPIO 2 to 1 (HIGH) and turn on the LED.

2. In the second example, when you toggle the button to turn off GPIO 2. When

this happens in/update? Output = 2 & status = 0 URL. Based on this URL, we change

the state of GPIO 2 to 0 (LOW) and turn off the LED.

22.4 ESP asynchronous Web server code

// Library files that need to be installed

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>// Replace with your network credentials

const char* ssid = "REPLACE_WITH_YOUR_SSID";//Enter your wifi name

const char* password = "REPLACE_WITH_YOUR_PASSWORD";//Enter wifi
password

const char* PARAM_INPUT_1 = "output";

const char* PARAM_INPUT_2 = "state";

//Create an AsyncWebServer object on port 80

AsyncWebServer server(80);

const char index_html[] PROGMEM = R"rawliteral(

<!DOCTYPE HTML><html><head>

<title>ESP Web Server</title>

<meta name="viewport" content="width=device-width, initial-scale=1">

86/152

<link rel="icon" href="data:,">

<style>

html {font-family: Arial; display: inline-block; text-align:
center;}

h2 {font-size: 3.0rem;}

p {font-size: 3.0rem;}

body {max-width: 600px; margin:0px auto; padding-bottom: 25px;}

.switch {position: relative; display: inline-block; width: 120px;
height: 68px}

.switch input {display: none}

.slider {position: absolute; top: 0; left: 0; right: 0; bottom: 0;
background-color: #ccc; border-radius: 6px}

.slider:before {position: absolute; content: ""; height: 52px; width:
52px; left: 8px; bottom: 8px; background-color: #fff;
-webkit-transition: .4s; transition: .4s; border-radius: 3px}

input:checked+.slider {background-color: #b30000}

input:checked+.slider:before {-webkit-transform: translateX(52px);
-ms-transform: translateX(52px); transform: translateX(52px)}

</style>

</head>

<body>

<h2>ESP Web Server</h2>

%BUTTONPLACEHOLDER%

<script>function toggleCheckbox(element) {

var xhr = new XMLHttpRequest();

87/152

if(element.checked){ xhr.open("GET",
"/update?output="+element.id+"&state=1", true); }

else { xhr.open("GET", "/update?output="+element.id+"&state=0",
true); }

xhr.send();}

</script>

</body>

</html>

)rawliteral";// Replace placeholders in web pages with button sections

String processor(const String& var){

//Serial.println(var);

if(var == "BUTTONPLACEHOLDER"){

String buttons = "";

buttons += "<h4>Output - GPIO 5</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"5\" " +
outputState(5) + "></label>";

buttons += "<h4>Output - GPIO 4</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"4\" " +
outputState(4) + "></label>";

buttons += "<h4>Output - GPIO 2</h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"2\" " +
outputState(2) + "></label>";

return buttons;

}

return String();

}

String outputState(int output){

88/152

if(digitalRead(output)){

return "checked";

}

else {

return "";

}

}

void setup(){

// Serial port for debugging

Serial.begin(115200);

pinMode(5, OUTPUT);

digitalWrite(5, LOW);

pinMode(4, OUTPUT);

digitalWrite(4, LOW);

pinMode(2, OUTPUT);

digitalWrite(2, LOW);

// Connect to a wireless network

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to WiFi..");

89/152

}

// ESP local IP address is displayed”

Serial.println(WiFi.localIP());

// Route for root / web page

server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

request->send_P(200, "text/html", index_html, processor);

});

// Send a GET request to
<ESP_IP>/update?output=<inputMessage1>&state=<inputMessage2>

server.on("/update", HTTP_GET, [] (AsyncWebServerRequest *request) {

String inputMessage1;

String inputMessage2;

// GET input1 value on
<ESP_IP>/update?output=<inputMessage1>&state=<inputMessage2>

if (request->hasParam(PARAM_INPUT_1) &&
request->hasParam(PARAM_INPUT_2)) {

inputMessage1 = request->getParam(PARAM_INPUT_1)->value();

inputMessage2 = request->getParam(PARAM_INPUT_2)->value();

digitalWrite(inputMessage1.toInt(), inputMessage2.toInt());

}

else {

inputMessage1 = "No message sent";

inputMessage2 = "No message sent"; }

90/152

Serial.print("GPIO: ");

Serial.print(inputMessage1);

Serial.print(" - Set to: ");

Serial.println(inputMessage2);

request->send(200, "text/plain", "OK");

});

//Start server

server.begin();}void loop() {}

22.5 How the code works

In this section, we explain how the code works.

Import libraries

First, import the required libraries. You need to include wireless Internet access,

ESPA sync network server and ESPA sync TCP library.

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>

Set up network credentials

Insert your network credentials in the following variables so that ESP8266 can

connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

91/152

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

The input parameters

To check the parameters passed through the URL (GPIO number and its state),

we create two variables, one for output and one for state.

const char* PARAM_INPUT_1 = "output";

const char* PARAM_INPUT_2 = "state";

Keep in mind that ESP8266 receives requests like: / Update? Output =2& state

=0

AsyncWebServer object

Create an object on port 80 of the asynchronous Web server.

AsyncWebServer server(80);

Build a web page

All HTML text with styles and JavaScript is stored in index_HTML variable. Now

we'll go through the HTML text and see what each section does.

The title is located at < title> And </tile> Tags. The title is exactly what it sounds like:

the title of your document, which appears in the title bar of your Web browser. In this case,

it is the "ESP Web server."

92/152

The following < meta >; Tabs make your web pages responsive in any

browser (laptop, tablet, or smartphone).

<meta name="viewport"

content="width=device-width, initial-scale=1">

The next line blocks requests for web site ICONS. In this case, we don't have a

website icon. A website icon is a website icon that appears next to the title of a Web

browser TAB. If we don't add the following line, ESP will receive a request for FavIcon

every time we visit the Web server.

<link rel="icon" href="data:,">

In <style> </style> ，Between the tabs, we added some CSS to set the style of

the page. We won't go into the details of how this CSS style works.

<style> html {font-family: Arial; display: inline-block;

text-align: center;}

h2 {font-size: 3.0rem;}

p {font-size: 3.0rem;}

body {max-width: 600px; margin:0px auto;

padding-bottom: 25px;}

.switch {position: relative; display: inline-block;

width: 120px; height: 68px}

.switch input {display: none}

.slider {position: absolute; top: 0; left: 0; right: 0;

bottom: 0; background-color: #ccc; border-radius: 6px}

.slider:before {position: absolute; content: ""; height:

93/152

52px; width: 52px; left: 8px; bottom: 8px; background-color:

#fff; -webkit-transition: .4s; transition: .4s;

border-radius: 3px}

input:checked+.slider {background-color: #b30000}

input:checked+.slider:before {-webkit-transform:

translateX(52px); -ms-transform: translateX(52px);

transform: translateX(52px)}

</style>

HTML text

The inside of the<body> </ body>Tags are the content we add to the page.

The < h2 >< /h2 >; Add TAB titles to web pages. In this case, "ESP

Web Server" text, but you can add any other text.

<h2>ESP Web Server</h2>

After the title, we have the button. How buttons appear on web pages

(red: if GPIO is on; Or gray: if GPIO is off) depends on the current GPIO

state.

When you visit a Web server page, you want it to display the correct

current GPIO state. So, instead of adding HTML text, we'll add a

placeholder to build the button % button placeholder %. When the web page

loads, this placeholder is replaced with the actual HTML text to build

the button with the correct state.

%BUTTONPLACEHOLDER%

JavaScript

94/152

Then, as we explained earlier, there is some JavaScript responsible

for making HTTP GET requests when you switch buttons.

<script>function toggleCheckbox(element) {

var xhr = new XMLHttpRequest();

if(element.checked){ xhr.open("GET",
"/update?output="+element.id+"&state=1", true); }

else { xhr.open("GET", "/update?output="+element.id+"&state=0",
true); }

xhr.send();}</script>

Here is the line that made the request:

if(element.checked){xhr.open("GET",

"/update?output="+element.id+"&state=1", true); }

Element. Id Returns the ID of an HTML element. The ID of each button

will be the GPIO of the control, as we will see in the next section:

GPIO 5 button » element.id = 5

GPIO 4 button » element.id = 4

GPIO 2 button » element.id = 2

The processor

Now we need to create the processor () function to replace the placeholders in

the HTML text with what we define.

When requesting a web page, check the HTML for any placeholders. If it finds

the % button placeholder % placeholder, it returns HTML text to create the button.

String processor(const String& var){

//Serial.println(var);

if(var == "BUTTONPLACEHOLDER")

{ String buttons = "";

95/152

buttons+="<h4>Output-GPIO5</h4><label class=\"switch\"><input

type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"5\" " +

outputState(5) + "></label>"; buttons +=

"<h4>Output - GPIO 4</h4><label class=\"switch\"><input

type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"4\" " +

outputState(4) + "></label>"; buttons +=

"<h4>Output - GPIO 2</h4><label class=\"switch\"><input

type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"2\" " +

outputState(2) + "></label>"; return

buttons; } return String(); }

You can easily delete or add more rows to create more buttons.

Let's look at how buttons are created. We create a String variable

button named String that contains the HTML text used to build the button.

We concatenate the HTML text with the current output state so that the

toggle button is either gray or red. The current output state is determined

by the output state (< GPIO>) Function (which takes a GPIO number

as an argument). See below:

buttons += "<h4>Output - GPIO 2</h4><label class=\"switch\"><input

type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"2\" " + outputState(2) +

"></label>";

Use \ so that we can pass "" in the string.

This output status () function returns "check" if GPIO is in the open

state or the field is empty if GPIO is off.

StringoutputState(intoutput)

{ if(digitalRead(output))

96/152

{ return "checked"; }

else { return ""; }

}

Therefore, when GPIO 2 opens, the HTML text will be:

<h4>Output - GPIO 2</h4> <label class="switch"> <input

type="checkbox" onchange="toggleCheckbox(this)" id="2"

checked> </label>

Let's break it down into smaller pieces to understand how it

works.

In HTML, a toggle switch is an input type. Described <Input > ;

Flags the specified input field where the user can enter data. Toggle

switch is an input field type check box. There are many other input

field types.

<input type="checkbox">

The check box can be checked or unchecked. When you check,

you have the following:

<input type="checkbox" checked>

Among these changes are the event attributes that occur when we change

the value of an element (check box). Every time you check or uncheck the

toggle switch, it calls the JavaScript function (this) that toggles the

checkbox () for that particular element ID.

This ID specifies a unique ID for the HTML element. Id allows us to

manipulate elements using JavaScript or CSS.

97/152

<input type="checkbox" onchange="toggleCheckbox(this)" id="2" checked>

setup()

Initialize the monitor in setup() for debugging.

Serial.begin(115200);

Use the pinMode () function and set them to LOW when the

ESP8266 is first started. If you add more GPIO, follow the same

process.

pinMode(2, OUTPUT);

pinMode(5, OUTPUT);

digitalWrite(5, LOW);

pinMode(4, OUTPUT);

digitalWrite(4, LOW);

pinMode(2, OUTPUT);

digitalWrite(2, LOW);

Connect to your local network and print the ESP8266 IP address.

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

98/152

Serial.println("Connecting to WiFi.."); }

// Print ESP Local IP Address

Serial.println(WiFi.localIP());

In Setup (), you need to handle what happens when ESP8266 receives the

request. As we saw earlier, you get requests like this:

<ESP_IP>/update?output=<inputMessage1>&state=<inputMessage2>

Therefore, we check if the request contains the PARAM_INPUT1 variable

values (output) and PARAM_INPUT2(state) and store the corresponding

values in the input 1 message and input 2 message variables.

if(request->hasParam(PARAM_INPUT_1)&&request->hasParam(PARAM_INPUT_

2)) { inputMessage1 = request->getParam(PARAM_INPUT_1)->value();

inputMessage2 = request->getParam(PARAM_INPUT_2)->value();

We then control the corresponding state of the corresponding GPIO (input

message 1 variable holds the GPIO number and input message 2 holds the status-0

or 1)

digitalWrite(inputMessage1.toInt(),inputMessage2.toI

nt());

Here is the complete code for handling HTTP GET/UPDATE requests:

server.on("/update", HTTP_GET, [] (AsyncWebServerRequest *request) {

String inputMessage1;

String inputMessage2;

// GET input1 value on
<ESP_IP>/update?output=<inputMessage1>&state=<inputMessage2>

if (request->hasParam(PARAM_INPUT_1) &&
request->hasParam(PARAM_INPUT_2)) {

99/152

inputMessage1 = request->getParam(PARAM_INPUT_1)->value();

inputMessage2 = request->getParam(PARAM_INPUT_2)->value();

digitalWrite(inputMessage1.toInt(), inputMessage2.toInt());

}

else {

inputMessage1 = "No message sent";

inputMessage2 = "No message sent";

}

Serial.print("GPIO: ");

Serial.print(inputMessage1);

Serial.print(" - Set to: ");

Serial.println(inputMessage2);

request->send(200, "text/plain", "OK");});

Finally, start the server:

server.begin();

demonstration

After uploading the code to ESP8266, turn on the serial monitor at

115200 baud rate. Press the onboard RST/EN button. You should get its IP

address.

Open a browser and type ESP IP address. You will be able to access

similar web pages.

100/152

Press the toggle button to control ESP GPIO. In the meantime, you should

receive the following message in the serial monitor to help you debug your code.

You can also access the web server from a browser in your smartphone. Every

time you open the Web server, it displays the current GPIO state. Red indicates THAT

GPIO is on and gray indicates that GPIO is off.

101/152

Lesson 23 ESP8266 Node MCU button control LED

In this introductory course, you will learn how to read digital inputs

such as button switches and control digital outputs such as leds using

the ESP8266 NodeMCU board with Arduino IDE.

23.1 ESP8266 NodeMCU controls digital output

First, you need to set the GPIO you are going to control as output.

Use pinMode () as follows:

pinMode(GPIO, OUTPUT);

To read numeric input, such as buttons, you can use the digitalRead

() function, which takes the GPIO (integer) you point to as an argument.

digitalRead(GPIO);

23.2 Project example

To show you how to use digital input and digital output, we'll build

an example of a simple project with buttons and leds. We will read the

status of the button and light up the LED accordingly, as shown below.

102/152

23.3 Wiring diagram:

Before proceeding, you need to assemble a circuit with leds and

buttons. We connected the LED to the universal I/O outlet 5 (D1) and the

button universal I/O outlet 4 (D2).

23.4 Working Code:

// set pin numbers

const int buttonPin = 4; // the number of the pushbutton pin

const int ledPin = 5; // the number of the LED pin

// variable for storing the pushbutton status

int buttonState = 0;

void setup() {

// initialize the pushbutton pin as an input

pinMode(buttonPin, INPUT);

103/152

// initialize the LED pin as an output

pinMode(ledPin, OUTPUT);

}

void loop() {

// read the state of the pushbutton value

buttonState = digitalRead(buttonPin);

// check if the pushbutton is pressed.

// if it is, the buttonState is low

if (buttonState == LOW) {

// turn LED on

digitalWrite(ledPin, HIGH);

}

else {

// turn LED off

digitalWrite(ledPin, LOW);

}

}

23.5 Code working principle:

In the following two lines, you create variables to assign pins:

const int buttonPin = 4;

const int ledPin = 5;

The button is connected to universal I/O outlet 4 and the LED is

104/152

connected to universal I/O outlet 5. When using an Arduino IDE with ESP8266,

4 corresponds to the generic I/O 4 and 5 corresponds to the generic I/O

5.

Next, create a variable to hold the button state. By default, it is

0 (not pressed).

int buttonState = 0;

In setup (), you initialize the button as input and the LED as

output. To do this, you use pinMode () to accept the pin and mode

function you point to: input or output.

pinMode(buttonPin, INPUT);

pinMode(ledPin, OUTPUT);

Inside loop () is where you read the button state and set the LED

accordingly.

In the next line, you read the button state and save it in the variable

button state. As we saw earlier, you use the digitalRead () function.

buttonState = digitalRead(buttonPin);

The following if statement checks whether the button state is HIGH.

If so, it turns on the LED using the digitalWrite() function, which takes

ledPin as an argument and sets the state to HIGH.

if (buttonState == HIGH)

{ digitalWrite(ledPin, HIGH);

}

105/152

If the button state is not "HIGH", the LED is set to off. Simply set

LOW to the second argument in the digitalWrite() function.

else { digitalWrite(ledPin, LOW); }

23.6 Upload code

Before clicking the upload button, go to Tools > Board，and then

select the Board you are using. NodeMCU 1.0 (ESP-12 E Module).

Go to tools > Port and select the COM port to which ESP8266 is connected.

Then, press the upload button and wait for the "Upload completed" message.

23.7 Object diagram:

106/152

Lesson 24 ESP8266 Controlling LED

Brightness (PWM)

This tutorial shows how to generate PWM signals through ESP8266

NodeMCU using the Arduino IDE. For example, we will dim the LED brightness

by changing the duty cycle over time.

24.1 ESP8266 NodeMCU PWM

The ESP8266 GPIO can be set to output 0V or 3.3V, but cannot output

any voltage between them. However, you can use pulse width modulation (PWM)

to output "false" intermediate voltages, which is how you generate

different levels of LED brightness for this project.

If you quickly alternate the voltage of the LED between high and low

levels, your eye can't keep up with the speed of the LED switch; You'll

just see some gradients in the brightness.

This is basically how PWM works -- by producing an output that varies

between HIGH and LOW at a very HIGH frequency.

Duty cycle is part of the period during which the LED is set to high

level. The following figure illustrates how PWM works.

107/152

An LED with a duty cycle of 50% has a brightness of 50%, a duty cycle of

0 means the LED is fully off, and a duty cycle of 100 means the LED is

fully on. Changing duty cycle is how you produce different brightness

levels.

analogWrite()

To generate a PWM signal on a given pin, use the following function:

analogWrite(pin, value);

Pin: PWM can be used with pins 0 to 16

value: Should be in the 0 to PWM range, default is 1023. When the value is 0, the

PWM on this pin is disabled. The value 1023 corresponds to 100% duty cycle

You can change the PWM range by calling:

analogWriteRange(new_range);

By default, the ESP8266 PWM frequency is 1kHz. You can change the PWM

frequency in the following ways:

analogWriteFreq(new_frequency);

108/152

24.2 Schematic diagram:

ESP8266 NodeMCU PWM code:

const int ledPin = 2; //Defines led pins (D4)

void setup() {

}

void loop() {

//Improve LED brightness

for(int dutyCycle = 0; dutyCycle < 1023; dutyCycle++){

// Use PWM to change LED brightness

analogWrite(ledPin, dutyCycle);

delay(1);

}

109/152

// Reduce LED brightness

for(int dutyCycle = 1023; dutyCycle > 0; dutyCycle--){

// Use PWM to change LED brightness

analogWrite(ledPin, dutyCycle);

delay(1);

}}

Code working principle:

First define the pin LED connected to. In this case, the LED is connected to the

universal INPUT/output port 2 (D4).

const int ledPin = 2;

In Loop (), you can change the duty cycle between 0 and 1023 to increase

the LED brightness.

for(int dutyCycle = 0; dutyCycle < 1023; dutyCycle++){

// Use PWM to change LED brightness

analogWrite(ledPin, dutyCycle);

delay(1);}

To set the LED brightness, you need to use the function that

analogWrite() accepts GPIO as an argument, where you want to get the PWM

signal and a value between 0 and 1023 to set the duty cycle.

110/152

24.3 Upload code:

In your Arduino IDE, go to Tools > Board and select your ESP8266

model.

24.4 Wiring Diagram:

111/152

Lesson 25 ESP8266 Node MCUWeb Server

Control LED Brightness (PWM)

This tutorial shows how to build the ESP8266 NodeMCU Web server with sliders

to control LED brightness. You'll learn how to add a slider to your Web server project,

get its value, and save it in a variable that ESP8266 can use. We will use this value to

control the duty cycle of the PWM signal and change the brightness of the LED. For

example, you can also control servo motors instead of just leds.

In addition, you can modify the code in this tutorial to add a slider for your project to

set thresholds or any other values you need to use in your code.

112/152

ESP8266 hosts a Web server that displays Web pages with sliders;

When you move the slider, you make an HTTP request to ESP8266 with the new

slider value;

HTTP requests take the following format: GET/slider? Value =SLIDERVALUE, where

the SLIDERVALUE is a number between 0 and 1023. You can modify the slider to

include any other scope;

ESP8266 gets the current value of the slider from the HTTP request;

ESP8266 adjusts PWM duty ratio according to slider value;

This is useful for controlling the brightness of leds (as we will do in this example),

servomotors, setting thresholds, or other applications.

Arduino IDE

We will program the ESP8266 NodeMCU board using the Arduino IDE, so make

sure you have the ESP8266 board installed in your Arduino IDE before continuing

with this tutorial.

25.1 Working Code:

// Add the required libraries

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>

// Replace with your network credentials (enter your WiFi name and WiFi password)

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

const int output = 2;

String sliderValue = "0";

const char* PARAM_INPUT = "value";

113/152

// Create an AsyncWebServer object on port 80

AsyncWebServer server(80);

const char index_html[] PROGMEM = R"rawliteral(<!DOCTYPE
HTML><html><head>

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>ESP Web Server</title>

<style>

html {font-family: Arial; display: inline-block; text-align:
center;}

h2 {font-size: 2.3rem;}

p {font-size: 1.9rem;}

body {max-width: 400px; margin:0px auto; padding-bottom: 25px;}

.slider { -webkit-appearance: none; margin: 14px; width: 360px;
height: 25px; background: #FFD65C;

outline: none; -webkit-transition: .2s; transition: opacity .2s;}

.slider::-webkit-slider-thumb {-webkit-appearance: none;
appearance: none; width: 35px; height: 35px; background: #003249; cursor:
pointer;}

.slider::-moz-range-thumb { width: 35px; height: 35px; background:
#003249; cursor: pointer; }

</style></head><body>

<h2>ESP Web Server</h2>

<p>%SLIDERVALUE%</p>

<p><input type="range" onchange="updateSliderPWM(this)"
id="pwmSlider" min="0" max="1023" value="%SLIDERVALUE%" step="1"
class="slider"></p><script>

function updateSliderPWM(element) {

114/152

var sliderValue = document.getElementById("pwmSlider").value;

document.getElementById("textSliderValue").innerHTML = sliderValue;

console.log(sliderValue);

var xhr = new XMLHttpRequest();

xhr.open("GET", "/slider?value="+sliderValue, true);

xhr.send();}</script></body></html>)rawliteral";

// Replace placeholders in web pages with button sections

String processor(const String& var){

//Serial.println(var);

if (var == "SLIDERVALUE"){

return sliderValue;

}

return String();}

void setup(){

// Serial port for debugging

Serial.begin(115200);

analogWrite(output, sliderValue.toInt());

// Connect to Wi-Fi

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);

Serial.println("Connecting to WiFi..");

}

115/152

// ESP local IP address is displayed”

Serial.println(WiFi.localIP());

// Route for root / 网页

server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

request->send_P(200, "text/html", index_html, processor);

});

// Send a GET request to<ESP_IP>/slider? value= < inputMessage >
server.on("/slider", HTTP_GET, [] (AsyncWebServerRequest *request) {

String inputMessage;

// In<ESP_IP>Get input1 value on /slider? value= < inputMessage >

if (request->hasParam(PARAM_INPUT)) {

inputMessage = request->getParam(PARAM_INPUT)->value();

sliderValue = inputMessage;

analogWrite(output, sliderValue.toInt());

}

else {

inputMessage = "No message sent";

}

Serial.println(inputMessage);

request->send(200, "text/plain", "OK");

});

// Start server

116/152

server.begin();}

void loop() {

}

25.2 Code working principle:

First, import the required libraries. This ESP8266WiFi,

ESPAsyncWebServe and ESPAsyncTCP are required to build Web servers.

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>

#include <ESPAsyncWebServer.h>

Set network credentials:

Insert your network credentials in the following variables

so that ESP8266 can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Variable definition:

We will control the brightness of the ESP8266's built-in LED. 2. Save

the GPIO we want to control in the output variable.

const int output = 2;

This slider value variable will hold the slider value. At the beginning, it is set to

zero.

String sliderValue = "0";

Input parameters:

This parameter inputs that the variable will be used to "search" for

the slider value in the request received by ESP8266 when the slider moves.

117/152

(Remember: ESP8266 will receive a request like GET/slider?

value=SLIDERVALUE)

const char* PARAM_INPUT = "value";

It searches for value on the URL and gets the value assigned to it.

25.3 Build a web page

Now let's go to the Web server page.

The web page for this project is very simple. It contains a heading,

a paragraph, and a type range of input.

Let's look at how the web page is created.

All HTML text containing styles is stored in the index_HTML variable.

Now we'll go through the HTML text and see what each section does.

118/152

The following & lt; meta> Tags make your web page responsive in

any browser.

<meta name="viewport" content="width=device-width,

initial-scale=1">

Between<title> </ TITLE>Tags enter the name of our Web server. A

title is text that appears on a Web browser TAB.

Style

In<style></style>Between the tabs, we added some CSS to set the style

of the page.

<style> html {font-family: Arial; display: inline-block;

text-align: center;} h2 {font-size: 2.3rem;} p {font-size:

1.9rem;} body {max-width: 400px; margin:0px auto;

padding-bottom: 25px;} .slider { -webkit-appearance: none;

margin: 14px; width: 360px; height: 25px; background:

#FFD65C; outline: none; -webkit-transition: .2s;

transition: opacity .2s;} .slider::-webkit-slider-thumb

{-webkit-appearance: none; appearance: none; width: 35px;

height: 35px; background: #003249; cursor:

pointer;} .slider::-moz-range-thumb { width: 35px; height:

35px; background: #003249; cursor: pointer; } </style>

Basically, we set up the HTML page to display Arial text in a block

with no margins, aligned in the center.

119/152

html {font-family: Arial; display: inline-block;

text-align: center;}

The lines of the face set the font size for the heading (h2) and

paragraph (p).

h2 {font-size: 2.3rem;}

p {font-size: 1.9rem;}

Sets the HTML body properties.

body {max-width: 400px; margin:0px auto; padding-bottom:

25px;}

The following row custom slider:

.slider { -webkit-appearance: none; margin: 14px; width:

360px; height: 25px; background: #FFD65C; outline: none;

-webkit-transition: .2s; transition:

opacity .2s;} .slider::-webkit-slider-thumb

{-webkit-appearance: none; appearance: none; width: 35px;

height: 35px; background: #003249; cursor:

pointer;} .slider::-moz-range-thumb { width: 35px; height:

35px; background: #003249; cursor: pointer; }

HTML text

The inside of the<body> </ body>Tags are the content we add to the page.

The<h2> </ h2>Add TAB titles to web pages. In this case, "ESP Web Server" text,

but you can add any other text.

120/152

<h2>ESP Web Server</h2>

The first segment will contain the current slider value. That

particular HTML tag has the ID textSliderValue assigned to it so that

we can reference it later.

<p><span

id="textSliderValue">%SLIDERVALUE%</p>

The % slider value % is a placeholder for the slider value. When ESP8266 sends it

to the browser, it will be replaced with the actual value. This is useful for displaying

the current value when you first visit the browser.

Create the slider

To create sliders in HTML, use < input> The label. Described

& lt; Input & gt; The tag specifies a field in which the user can enter

data.

There are multiple input types. To define the slider, use the Type

attribute and the range value. In the slider, you also need to define the

minimum and maximum ranges (in this case, 0 and 1023, respectively) using

the "min" and "Max" attributes.

<p><input

type="range"onchange="updateSliderPWM(this)"

id="pwmSlider" min="0" max="1023" value="%SLIDERVALUE%"

step="1" class="slider"></p>

You also need to define other properties, such as:

Specify the interval between valid numbers in the step property. In our case, it

is set to 1;

Style slider in class (class = "slider");

121/152

The ID used to update the current location displayed on the web page;

The onchange property of the calling function (updateSliderPWM(this)) sends

an HTTP request to ESP8266 as the slider moves. The this keyword refers to the

current value of the slider.

<script> function updateSliderPWM(element) { var

sliderValue = document.getElementById("pwmSlider").value;

document.getElementById("textSliderValue").innerHTML =

sliderValue; console.log(sliderValue); var xhr = new

XMLHttpRequest(); xhr.open("GET",

"/slider?value="+sliderValue, true); xhr.send(); }

</script>

The next line gets the current slider value by its ID and saves it

in the slider value JavaScript variable. Previously, we assigned the id

of the slider to the PWM slider. So we get it as follows:

Var sliderValue= document.getElementById("pwmSlider").value;

After that, we set the slider label (whose ID is the text slider value)

to the variable saved in the slider value.

Finally, an HTTP GET request is issued.

var xhr = new XMLHttpRequest();

xhr.open("GET", "/slider?value="+sliderValue, true);

xhr.send();

For example, when the slider is at 0, you make an HTTP GET

request to the following URL:
http://ESP-IP-ADDRESS/slider?value=0

When the slider value is 200, you will receive the request on the

concern URL.

122/152

http://ESP-IP-ADDRESS/slider?value=200

This way, when ESP8266 receives a GET request, it can retrieve the

value parameter in the URL and control the PWM signal accordingly, as we'll

see in the next section:

Processor:

Now we need to create the processor () function that will replace the

placeholders in our HTML text with the current slider value when you first

access it in your browser.

// Replaces placeholder with button section in your web

page String processor(const String&

var){ //Serial.println(var); if (var ==

"SLIDERVALUE"){ return sliderValue; } return String(); }

When requesting a web page, we check for any placeholders in

the HTML. If it finds the %SLIDERVALUE% placeholder, we will return

the variable saved in the SLIDERVALUE.

setup()
Under Setup (), initialize the serial monitor for debugging.

Serial.begin(115200);

Set the duty cycle of the PWM signal to save at the slider value (it is set to 0

when ESP8266 starts).

analogWrite(output, sliderValue.toInt());

Connect to your local network and print the ESP8266 IP address.

// Connect to Wi-Fi WiFi.begin(ssid, password); while

(WiFi.status() != WL_CONNECTED) { delay(1000);

Serial.println("Connecting to WiFi.."); } // Print ESP

Local IP Address Serial.println(WiFi.localIP());

123/152

Processing requests:

Finally, add the next few lines of code to handle the Web server.

// Route for root / web page

server.on("/", HTTP_GET, [](AsyncWebServerRequest

*request){ request->send_P(200, "text/html", index_html,

processor); });

//Send a GET request to <ESP_IP>/slider?value=<inputMessage>

server.on("/slider", HTTP_GET, [] (AsyncWebServerRequest

*request) { String inputMessage; // GET input1 value on

<ESP_IP>/slider?value=<inputMessage> if

(request->hasParam(PARAM_INPUT)) { inputMessage =

request->getParam(PARAM_INPUT)->value(); sliderValue =

inputMessage; ledcWrite(ledChannel,

sliderValue.toInt()); } else { inputMessage = "No message

sent"; } Serial.println(inputMessage); request->send(200,

"text/plain", "OK"); });

When we make a request for the root URL, we send the HTML text stored in

the index_HTML variable. We also need to pass in the Processor () function,

which will replace all placeholders with the correct values.

// Route for root / web page server.on("/", HTTP_GET,

[](AsyncWebServerRequest *request){ request->send_P(200,

"text/html", index_html, processor); });

We need another handler that will save the value of the current slider and set the

corresponding LED brightness.

124/152

server.on("/slider", HTTP_GET, []

(AsyncWebServerRequest *request) { String inputMessage; //

GET input1 value on <ESP_IP>/slider?value=<inputMessage>

if (request->hasParam(PARAM_INPUT)) { inputMessage =

request->getParam(PARAM_INPUT)->value(); sliderValue =

inputMessage; ledcWrite(ledChannel,

sliderValue.toInt()); } else { inputMessage = "No message

sent"; } Serial.println(inputMessage); request->send(200,

"text/plain", "OK"); });

Basically, we get the slider value in the following lines:

if (request->hasParam(PARAM_INPUT)) { inputMessage =

request->getParam(PARAM_INPUT)->value(); sliderValue =

inputMessage;

Then, update the LED brightness (PWM duty cycle) with the following command.

LedcWrite () accepts the channel and value you want to control as a function of

parameters.

ledcWrite(ledChannel, sliderValue.toInt());

Finally, start the server.

server.begin();

Since this is an asynchronous Web server, we don't need to write anything in loop().

void loop(){ }

That's how the code works.

125/152

Upload code:

Now, upload the code to your ESP8266. Make sure you select the correct

circuit board and COM port.

After uploading, turn on the serial port monitor at 115200 baud rate

and press the ESP8266 reset button. The ESP8266 IP address should be

printed on the serial monitor.

25.4 Web server Demo

Open a browser and enter the ESP8266 IP address. Your Web server should

display the slider and its current value.

Move the slider to see the brightness of the ESP8266's built-in LEDS

increase and decrease.

126/152

Lesson 26 ESP8266 controls WS2812 lights

via Blinker

This tutorial shows how Nodemcu ESP8266 can control RGB color changes via

Blinker. You'll learn how to use Blinker APP to control it from around the world via

the Internet of Things; For example, you can also control servo motors or DC motors

instead of just RGB.

26.1 Arduino configuration

Install the blinker Arduino

1、Open the tutorial library files to find blinker library、Adafruit_NeoPixellibrary

unzip to my computer > Document > Arduino > libraries folder；

127/152

2、Add a device to the App and obtain the Secret Key

1. Enter the App, click "+" in the upper right corner, and then

select Add device；

2. Click Arduino > WiFi access；

3. Select a service provider to access；

4. Copy the requested file Secret Key；

(Note: If you haven't used Blinker before, you'll need to sign up for

an account with your mobile number.)

128/152

26.2 Working Code:

(Note: the value of auth[] in the source code is the Secret Key obtained in

the App. Other configurations can be set according to their own

conditions.)

#define BLINKER_PRINT Serial

#define BLINKER_MIOT_LIGHT

#define BLINKER_WIFI

#include <Blinker.h>

#include <Adafruit_NeoPixel.h>

char auth[] = "*********"; //****Enter the secret key you obtained

in Blinker****/

#define PIN 15 // DIN PIN (GPIO15, D8)

#define NUMPIXELS 60 // Defines the number of RGB to be lit

Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB

+ NEO_KHZ800);

// Creating a Component Object

BlinkerRGB RGB1("RGB");

int LED_R=0,LED_G=0,LED_B=0,LED_Bright=180; // Define RGB and

brightness

bool WIFI_Status = true;

void smartConfig() //Configuration network function

{

129/152

WiFi.mode(WIFI_STA);

Serial.println("\r\nWait for Smartconfig...");

WiFi.beginSmartConfig();//Waiting for the user name and password

sent by the mobile phone

while (1)

{

Serial.print(".");

digitalWrite(LED_BUILTIN, HIGH);

delay(1000);

digitalWrite(LED_BUILTIN, LOW);

delay(1000);

if (WiFi.smartConfigDone())//Exit the waiting for

{

Serial.println("SmartConfig Success");

Serial.printf("SSID:%s\r\n", WiFi.SSID().c_str());

Serial.printf("PSW:%s\r\n", WiFi.psk().c_str());

break;

}

}

}

void WIFI_Set()//

{

130/152

//Serial.println("\r\n Are connected");

int count = 0;

while(WiFi.status()!=WL_CONNECTED)

{

if(WIFI_Status)

{

Serial.print(".");

digitalWrite(LED_BUILTIN, HIGH);

delay(500);

digitalWrite(LED_BUILTIN, LOW);

delay(500);

count++;

if(count>=5)//5s

{

WIFI_Status = false;

Serial.println("WiFi connection failed, please use

mobile phone to configure network");

}

}

else

{

smartConfig(); //Wechat intelligent distribution network

131/152

}

}

/* Serial.println("The connection is successful");

Serial.print("IP:");

Serial.println(WiFi.localIP());*/

}

void SET_RGB(int R,int G,int B,int bright)

{

for (uint16_t i = 0; i < NUMPIXELS; i++) //Change the color of the

light strip

{

pixels.setPixelColor(i,R,G,B);

}

pixels.setBrightness(bright);//brightness

pixels.show(); //Send display

}

//APP RGB Color setting callback

void rgb1_callback(uint8_t r_value, uint8_t g_value,

uint8_t b_value, uint8_t bright_value)

{

132/152

//digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN));

BLINKER_LOG("R value: ", r_value);

BLINKER_LOG("G value: ", g_value);

BLINKER_LOG("B value: ", b_value);

BLINKER_LOG("Rrightness value: ", bright_value);

LED_Bright = bright_value;

SET_RGB(r_value,g_value,b_value,LED_Bright);

}

void setup() {

// Initializing the serial port

Serial.begin(115200);

pixels.begin();//WS2812 initialization

pixels.show();

pinMode(LED_BUILTIN, OUTPUT);

#if defined(BLINKER_PRINT)

BLINKER_DEBUG.stream(BLINKER_PRINT);

#endif

WIFI_Set();

// blinker initialization

Blinker.begin(auth, WiFi.SSID().c_str(), WiFi.psk().c_str());

133/152

RGB1.attach(rgb1_callback);//Registers callback functions that

adjust colors

}

void loop() {

Blinker.run();

}

The source code only to achieve monochrome display, more color or cool effect

display please modify the source code.

Upload code:

134/152

26.3 App Connection Configuration

Connected devices

Open the Lighting App and click the sidebar button - > Developers

- >Development tools - > EspTouch/SmartConfig, enter the WiFi password and click

to start the configuration.

135/152

Enter WIFI password

Configuration is successful

136/152

Device configuration

1.Return to the blinker App home page and you can see that the device is online.

Click the device to enter the configuration page.

137/152

2.Click the device Edit button;

3. Click the Edit button to enter the component editing state. Click the color

component at the bottom of the component list to add it to the interface, then click

the new color component to enter the component editing interface, change the data

key name to RGB, and click Save;

138/152

4. After editing, click the lock button in the upper right corner to finish editing,

and then you can control the lamp belt.

139/152

26.4 The wiring diagram:

140/152

Lesson 27 ESP8266 Nodemcu displays

temperature and humidity in combination

with Blinker

In this course, we will use the DHT11 temperature and humidity

sensor connected to ESP8266 Nodemcu to display the temperature and

humidity in Blinker APP.

27.1 DHT11 Sensor:

The DHT11 sensor provides humidity and temperature data. It has the following

pin interface.

141/152

In the last few sections we learned to use the Arduino IDE to develop the

Settings required for esp8266.

27.2 Install the library

As mentioned earlier, we assume that ESP8266 is programmed using an Arduino

IDE. If you have not already configured it to support ESP8266 boards, review lesson

20.

Add DHT11 libraries to the Arduino IDE.

The library can be easily installed through the Arduino IDE library

manager, as shown in Figure 3.

27.3Working code explanation:

(If you have a Xiao Ai device, this code can also be used to check

the temperature and humidity in your home.)

#define BLINKER_WIFI

#define BLINKER_MIOT_SENSOR //Xiao Ai defined it as sensor equipment

#include <Blinker.h>

#include <DHT.h>

char auth[] = "********"; //Device obtained by lighting APP

char ssid[] = "********"; //The name of the WiFi

142/152

char pswd[] = "********"; //WiFi password

BlinkerNumber HUMI("humi"); //Define the humidity data key name

BlinkerNumber TEMP("temp"); //Define the temperature data key name

#define DHTPIN 2 //Define DHT11 module connection pin GPI02 (D4)

#define DHTTYPE DHT11 // Use the DHT 11 temperature and humidity module

//#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

//#define DHTTYPE DHT21 // DHT 21 (AM2301)

DHT dht(DHTPIN, DHTTYPE); //定义 dht

float humi_read = 0, temp_read = 0;

void heartbeat()

{

HUMI.print(humi_read); //Send humidity data back to BlinkerApp

TEMP.print(temp_read); //Return temperature data to BlinkerApp

}

void miotQuery(int32_t queryCode) //Xiao Ai voice command feedback

{ BLINKER_LOG("MIOT Query codes: ", queryCode);

int humi_read_int=humi_read; //Remove humidity floating point

BlinkerMIOT.humi(humi_read_int); //Xiao Ai receives humidity

BlinkerMIOT.temp(temp_read); //Xiao Ai receives the temperature

BlinkerMIOT.print();

}

void setup()

{

Serial.begin(115200);

BLINKER_DEBUG.stream(Serial);

BLINKER_DEBUG.debugAll();

Blinker.begin(auth, ssid, pswd);

Blinker.attachHeartbeat(heartbeat);

dht.begin();

143/152

BlinkerMIOT.attachQuery(miotQuery);

}

void loop()

{ Blinker.run();

float h = dht.readHumidity();

float t = dht.readTemperature();

if (isnan(h) || isnan(t))

{

BLINKER_LOG("Failed to read from DHT sensor!");

}

else

{ BLINKER_LOG("Humidity: ", h, " %"); //blinker APP Read display temperature

BLINKER_LOG("Temperature: ", t, " *C"); //blinker APP Read display humidity

humi_read = h;

temp_read = t;

}

Blinker.delay(2000);

}

In the comments of the code we can easily find which pin is used to receive data

with esp8266, but this refers to GPIO2, not D2 of our ESP8266d Nodemcu, but D4.

144/152

Open Arduino IDE to write code, compile and upload, and burn programs.

27.4 Wiring Diagram

Our DHT11 module has three pins: V, G and S.

145/152

After restarting the development board, we can see that the device is online in

the lighting app. We can also set the component Settings in the lighting app and

check the temperature and humidity in the lighting app:

146/152

For example, for our humidity data, the data key name is humi defined before

the code, the display text is humidity, the unit is %, the maximum value is 100; The

same goes for setting the temperature.

147/152

Finally, normal temperature and humidity are displayed, as shown in the figure:

148/152

Lesson 28 ESP8266 Nodem combined with

HC-SR04 Ultrasonic Ranging

In this course, we will use ESP8266 Nodem combined with HC-SR04 ultrasonic

sensor module to build ranging tools.

28.1 Ultrasonic transducer

The principle of ultrasonic ranging is the ultrasonic pulse emitted by the

ultrasonic probe, transmitted to the surface of the object through the medium (air),

reflected through the medium (air) to receive the probe, measured the ultrasonic

pulse from the transmission to receive the required time, according to the speed of

sound in the medium, obtained from the probe to the surface of the distance

between the object. If the distance between the probe and the surface of the object

is L, the propagation speed of ultrasonic in the air is V, and the propagation time

from transmitting to receiving is T, then L=vt/2. Thus it can be seen that there is a

definite functional relationship between the measured distance L and the

propagation time. As long as the time T can be measured, the distance L can be

calculated, and the value of L can be directly displayed on the monitor by software.

149/152

28.2 Wiring Diagram

28.3 Explanation of working Code:

The hC-SR04 ultrasonic sensor and ESP8266 were used to obtain the distance

from the object

First, define the trigger and echo pins.

const int trigPin = 12;

const int echoPin = 14;

In this example, we use generic I/O 12 and generic I/O 14. You can also modify

other GPIO pins as you like.

This sound velocity variable preserves the speed of sound in air at 20ºC. We use

values in cm/uS.

150/152

#define SOUND_SPEED 0.034

The CM_TO_INCH variable allows us to convert a distance in centimeters to

inches.

#define CM_TO_INCH 0.393701

Then, initialize the following variables.

long duration;

float distanceCm;

float distanceInch;

The duration variable holds the propagation time of the ultrasonic wave (the

time elapsed since the pulse wave was sent and received). The distanceCm and

istanceInch, as the name implies, save distances to objects in centimeters and inches.

setup()

In setup (), initialize the serial communication at 115200 baud rate so that we can print the

measurements on the serial monitor.

Serial.begin(115200); // Starts the serial communication

Define the trigger pin as the output -- the trigger pin emits ultrasonic

waves. An echo pin is defined as an input-echo pin that receives reflected

waves and sends a signal proportional to the travel time to ESP8266.

pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output

pinMode(echoPin, INPUT); // Sets the echoPin as an Input

loop()

In loop (), the following line produces a 10uS HIGH pulse on the trigger pin --

which means that the pin emits ultrasonic waves. Note that before sending the

pulse, we give a short low pulse to ensure that you will get a clean high pulse.

151/152

// Clears the trigPin

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

// Sets the trigPin on HIGH state for 10 micro seconds

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

We use the pulseIn() function to obtain the propagation time of sound waves:

duration = pulseIn(echoPin, HIGH);

The LOW () function reads a HIGH or LOW pulse from a pin. It accepts pins and

pulse states (HIGH or LOW) as parameters. It returns the pulse length in

microseconds. The pulse length is equal to the time it takes to reach the object

plus the time it takes to return.

Then, we simply calculate the distance to an object considering the speed of

sound.

distanceCm = duration * SOUND_SPEED/2;

Convert distance to inches:

distanceInch = distanceCm * CM_TO_INCH;

Finally, the results are printed on a serial monitor.

Serial.print("Distance (cm): ");

Serial.println(distanceCm);

Serial.print("Distance (inch): ");

Serial.println(distanceInch);

Upload the code to your board. Don't forget to select the board you are using in

the tool >; The board. Also, don't forget to use Tools & GT; Select the correct

152/152

COM port from port.

After the upload, open the Serial Monitor at baud rate 115200. Press the

on-board RST button to restart the board and it will begin printing the distance

to the nearest object on the serial monitor. As shown in the figure below.

	Lesson 1 Installing I
	1.1 Introduction
	1.2 Installing Arduino
	1.3 Installing Libraries
	1.4 Arduino
	1.5 Introduction to RGB Nano

	Lesson 2 Light LED
	2.1 Overview
	2.2 working principle
	2.3 Connection description
	2.4 Code explanation
	2.5 Upload code

	Lesson 3 Button control LED
	3.1 Overview
	3.2 Connection description
	3.3 Code explanation

	 Lesson 4 active buzzer
	4.1 Overview
	4.2 Connection description
	4.3 Code explanation

	Lesson 5 passive buzzer
	5.1 Overview
	5.2 Connection description
	5.3 Code explanation

	Lesson 6 Traffic Light
	6.1 Overview
	6.3 Wiring schematic
	6.4 Code explanation

	Lesson 7 Running water light
	7.1 Overview
	7.3 Wiring schematic
	7.4 Code explanation

	Lesson 8 WS2812B
	8.1 Overview
	8.2 working principle
	8.3 Characteristics

	8.4 Wiring schematic
	8.5 Code explanation

	Lesson 9 Gradient RGB
	9.1 Overview
	9.2 Working principle

	9.3 Wiring schematic
	9.4 Code explanation

	Lesson 10 DS1307
	10.1 Overview
	10.2 LCD1602 Introduction
	10.3 DS1307 Introduction

	10.4 Wiring schematic
	10.5 Code explanation

	Lesson 11 Show temp
	11.1 Overview
	11.2 Analog Temperature Sensor Introduction
	11.3 Wiring schematic
	 11.4 Code explanation

	Lesson 12 Show temp and humi
	12.1 Overview
	12.2 Wiring schematic
	12.3 Code explanation

	Lesson 13 Ultrasonic module
	13.1 Overview
	13.2 Ultrasonic sensor Introduction
	13.3 Wiring schematic
	 13.4 Code explanation

	Lesson 14 Photosensitive resistance
	14.1 Overview
	14.2 Component Introduction
	14.3 Connection Diagram
	14.4 Wiring schematic
	14.5 Code explanation

	 Lesson 15 Rotary encoder control RGB
	15.1 Overview
	15.2 Project wiring diagram
	15.3 Code explanation

	 Lesson 16 NRF24L01 launch
	16.1 Overview
	16.2 Project wiring diagram
	16.3 Code explanation

	 Lesson 17 Infrared control LED
	17.1 Overview
	17.2 Project wiring diagram
	17.3 Code explanation

	Lesson 18 Infrared control RGB
	18.1 Overview
	18.2 Project wiring diagram
	18.3 Code explanation

	 Lesson 19 Bluetooth control RGB
	19.1 Overview
	19.2 Connection description
	19.3 Code explanation
	19.4 Bluetooth remote control

	Lesson 20 ESP8266 Development board
	20.1 introduction:
	The ESP8266 is a Wi-Fi module ideal for Internet o
	20.2 ESP8266 specifications
	20.3 ESP8266 version
	20.4 NodeMCU pin arrangement peripherals
	20.5 What pins are used in NODEMCU ESP8266?

	Lesson 21 Installing the ESP8266 development board
	21.1 Install the ESP8266 plug-in in the Arduino ID
	21.2 Test the installation
	21.3 Wiring Diagram

	Lesson 22 ESP8266 NodeMCU WiFi control traffic lig
	22.1 Asynchronous Network Server
	22.2 Schematic Diagram:
	22.3 Wiring Diagram
	22.4 ESP asynchronous Web server code
	22.5 How the code works

	Lesson 23 ESP8266 Node MCU button control LED
	23.1 ESP8266 NodeMCU controls digital output
	23.2 Project example
	23.3 Wiring diagram:
	23.4 Working Code:
	23.6 Upload code
	23.7 Object diagram:

	Lesson 24 ESP8266 Controlling LED Brightness (PWM)
	24.1 ESP8266 NodeMCU PWM
	24.2 Schematic diagram:
	24.3 Upload code:
	24.4 Wiring Diagram:

	Lesson 25 ESP8266 Node MCU Web Server Control LED
	25.1 Working Code:
	25.2 Code working principle:
	25.3 Build a web page
	25.4 Web server Demo

	Lesson 26 ESP8266 controls WS2812 lights via Blink
	26.1 Arduino configuration
	26.2 Working Code:
	26.3 App Connection Configuration
	26.4 The wiring diagram:

	Lesson 27 ESP8266 Nodemcu displays temperature and
	27.1 DHT11 Sensor:
	27.2 Install the library
	27.3Working code explanation:
	27.4 Wiring Diagram

	Lesson 28 ESP8266 Nodem combined with HC-SR04 Ultr
	28.1 Ultrasonic transducer
	28.2 Wiring Diagram
	28.3 Explanation of working Code:

