Product introduction

The transmitter has a built-in temperature and humidity sensor and is small in size. The circuit adopts imported industrial-grade microprocessor chips and imported high-precision temperature sensors to ensure excellent reliability and high precision of the product. The equipment can be used in a non-condensing environment of 0-99.9%RH. The product adopts the 485 communication interface standard ModBus-RTU communication protocol, the communication address and baud rate can be set, and the communication distance is up to 2000 meters. The product has the function of anti-reverse connection protection, and the reverse connection will not burn the equipment.

1.1 Features

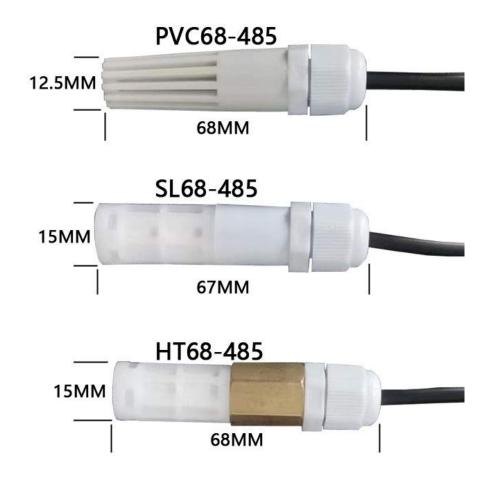
■ 485 communication interface, standard ModBus-RTU protocol, communication address and baud rate can be set, and the communication line can be up to 2000 meters long;

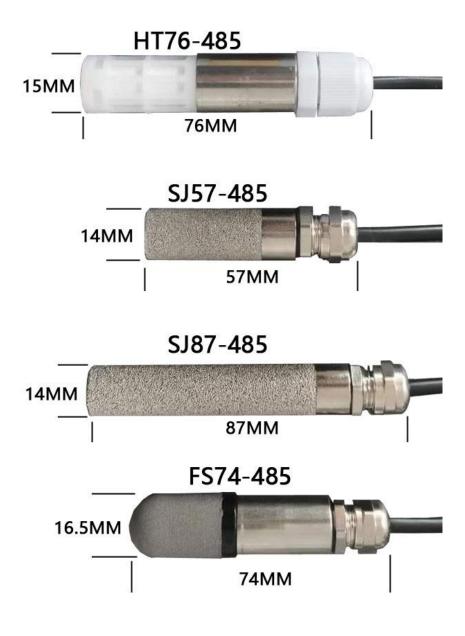
Temperature accuracy $\pm 0.3^{\circ}$ C, humidity accuracy $\pm 3\%$ RH, high precision, low drift;

■ Using special EMC anti-jamming devices, the field can withstand strong electromagnetic interference, industrial-grade processing chips, and a wide range of use;

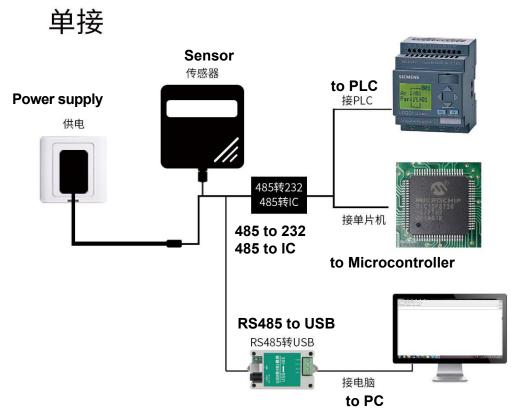
 \blacksquare 5~30V wide voltage range power supply, long-distance centralized power supply can still work normally;

Baud rate, register address, device address can be modified by software.

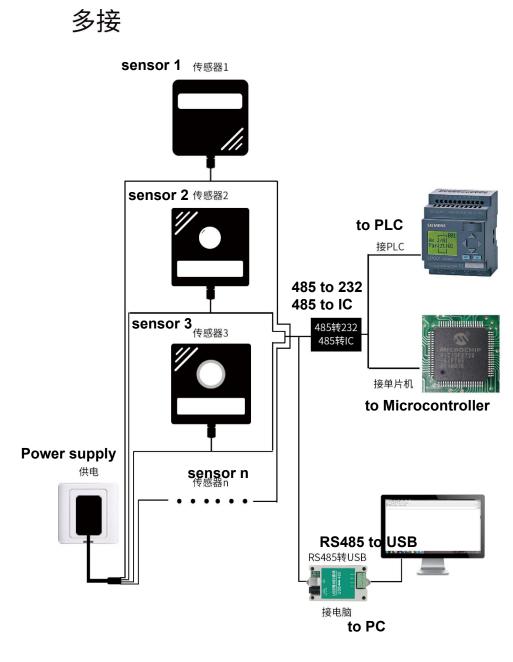

power (default)	5-30V DC		
Maximum power consumption		≤0.05W	
A 2011/2014	humidity	\pm 3%RH (60%RH, 25 $^\circ$ C)	
Accuracy	temperature	±0.3°C(25°C)	
Transmitter circuit operating	40°	C~180°C 0% BU~100% BU	
temperature	-40℃~+80℃,0%RH~100%RH		
letter of agreement	Modbus-RTU		
output signal	485		
Temperature display resolution		0.1°C	
Humidity Display Resolution		0.1%RH	
Temperature and humidity refresh		25	
time	25		
long torm stability	temperature	≪0.1° С/у	
long term stability	humidity	≤1%RH/y	
Response time	temperature	≤15s (1m/s)	


1.2 main parameters

	humidity	≤ 4s (1m/s)
parameter settings	Set by software	


1.3 Probe size

MODEL SIZE (DEFAULT CABLE 1 METER)



1.4 system framework

This product can also be used in combination of multiple sensors on a 485 bus. In theory, a bus can have 254 485 sensors, and the other end is connected to a PLC with a 485 interface, connected to a single-chip microcomputer through a 485 interface chip, or using USB to 485 to connect with Computer connection, use the sensor configuration tool provided by our company for configuration and testing (only one device can be connected when using this configuration software).

hardware

2.1 Equipment pre-installation inspection

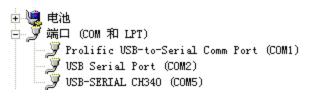
Equipment List: ■ 1pcs Temperature and humidity sensor probe ■ USB to 485 adapter (sold separately)

2.2 Interface Description

The power interface is wide voltage power input 5-30V. When wiring the 485 signal line, pay attention that the two lines A and B cannot be reversed, and the addresses of multiple devices on the bus cannot be conflicted.

2.2.1 Sensor wiring

Color	illustrate		
red	+ (5~30V DC)		
Black	GND		
Yellow	485-A		
Green	485-B		


Configuration software installation and use

We provide a matching "LY485-TOOL", which can easily use a computer to read the parameters of the sensor, and flexibly modify the device ID and address of the sensor.

Note that there is only one sensor on the 485 bus when using automatic acquisition by software.

3.1 Sensor connected to computer

After the sensor is correctly connected to the computer via USB to 485 and provides power, you can see the correct COM port in the computer (check the COM port in "My Computer - Properties - Device Manager - Port").

Open the data package, select "Debugging Software"---"485 Parameter Configuration Software", find the configuration software and open it.

3.2 Use of Sensor Monitoring Software

 $\textcircled{1}_{\sim}$ The configuration interface is shown in the figure. First, obtain the serial port number and

select the correct serial port according to the method in Chapter 3.1.

②、 Click "Open serial port" in the software, click "Test", you will get the current temperature and humidity, click one key to read, and the basic parameters of the probe will appear.

③、Modify the address and baud rate or calibration according to the needs of use, and at the same time, you can query the current functional status of the device.

④、 If the test is unsuccessful, please re-check the equipment wiring and 485 driver installation.

🔁 LY485 Temperature and humidity setting tool-Liyuan Technology Company Limited 🛛 🛛					
-Communication Settings: port number: COM1	-Reading temperature and humidity	Read/set the fixed register Device 485 Address: 1			
Baud rate: 9600 💌	humidity %	485 Address: 1 Set up			
parity: N 💌	temperature °C	Baud rate: 1200 💌 Set up Å key			
Data bits: 8 💌	read Real-time read C	Humidity address: 0 Set up read			
Stop bit: 1	Read cycle: 1.0 Sec	Humidity 0 Set up			
Serial Close port port	485 address: 1	calibration: temperature 0 Set up calibration:			
Please open the serial port	Humidity address: U				

communication protocol

4.1 Communication basic parameters

coding	8 bit binary				
data bits	8bit				
parity bit	None				
stop bit	1bit				
error checking	CRC (redundant cyclic code)				
baud rate	200bit/s、2400bit/s、4800bit/s、9600 bit/ss、14400 bit/ss、19200 bit/scan be set, Factory default is 9600bit/s				

4.2 Data Frame Format Definition

Using Modbus-RTU communication protocol, the format is as follows: Initial structure ≥4 bytes of time Address code = 1 byte Function code = 1 byte Data area = N bytes Error check = 16-bit CRC code Time to end structure ≥ 4 bytes Address code: the address of the transmitter, which is unique in the communication network (factory default 0x01). Function code: the function instruction of the command sent by the host, this transmitter only uses the function code 0x03 (read register data).

Data area: The data area is the specific communication data, pay attention to the high byte of the 16bits data first! CRC code: two-byte check code.

Host query frame structure:

Address	Function	register start	Register	Check code	Check code
code	code	address	length	low	high
1 byte	1 byte	2 byte	2 byte	1 byte	1 byte

Slave acknowledgment frame structure:

address code	Function code	number of valid bytes	data area	second data area	Nth data area	check code
1 byte	1 byte	1 byte	2 byte	2 byte	2 byte	2 byte

4.3 register address

register address	PLC or configuration	content	operate	Support function
(hex)	address			code
0000 H	40001	Humidity (10 times the actual	read	03
		value)	only	
0001 H	40002	Temperature (10 times the	read	03
		actual value)	only	
0100H	40257	address	read and	03、06
			write	
0101H	40258	Baud rate (1 for 1200, 2 for	read and	03、06
		2400, 3 for 4800, 4 for 9600, 5	write	
		for 14400, 6 for 19200)		
0102 H	40259	Humidity address	read and	03、06
			write	
0104H	40260	temperature correction value	read and	03、06
			write	
0105H	40261	Humidity correction value	read and	03、06
			write	

4.4 Communication protocol example and explanation

4.4.1 Read the temperature and humidity value of device address 0x01

Example: Read the temperature and humidity value of device address 0x01 Query frame (hexadecimal):

address code	Function code	initial address	Data length	Check code low	Check code high
0x01	0x03	0x00 0x00	0x00 0x02	0xC4	0x0B

Response frame (hexadecimal): (For example, the temperature is -9.7 $^\circ C$ and the humidity is 48.6%RH)

address code	function code	Returns the number of valid bytes	Humidity v alue	temperature value	Check code low	Check code high
0x01	0x03	0x04	0x01 0xE6	0xFF 0x9F	0x1B	0xA0

Temperature calculation:

When the temperature is lower than 0 $\,\,{}^\circ\!\mathrm{C}$, the temperature data is uploaded in the form of complement code.

Temperature: FF9F H (hex) = -97 => temperature = -9.7°C

Humidity calculation: Humidity: 1E6 H (Hex) = 486 => Humidity = 48.6%RH

4.4.4 Change the device with address 01 to 02

Request II							
address code	function code	register address	Contents of tem perature calibrati on value	Check code low	Check code high		
0x01	0x06	0x01 0x00	0x00 0x02	0x**	0x**		

Request frame (hexadecimal):

Response frame (hexadecimal):

address code	function code	register address	Contents of tem perature calibrati on value	Check code low	Check code high
0x01	0x06	0x01 0x00	0x00 0x02	0x**	0x**

4.4.5 Set the baud rate of device address 0x01 to 4800

Change the baud rate of device 01 to 4800 (01 means 1200, 01 means 2400, 02 means 4800, 03 means 9600, 04 means 14400, ,05 means 19200,)

address code	function code	register address	Baud rate value content	Check code low	Check code hi gh
0x01	0x06	0x01 0x01	0x00 0x01	0x**	0x**
Response frame (hexadecimal): Registe		nal): Register	Baud rate valu	e Check code	Check code
address code	function code	Address 寄存器地址	content 波特率值内容	low 校验码低位	high 校验码高位
0x01	0x06	0x01 0x01	0x00 0x01	0x**	0x**

Request frame (hexadecimal):

4.4.6 read device address

Query frame (hexadecimal):

address code	function code	initial address	Data length	Check code low	Check code
address code	runetion code		Data Kingui	Check code low	high

0x01	0x03	0x01 0x00	0x00 0x01	0x**	0x**		
Response frame (hexadecimal): (for example, the address is read as 1)							
address code	function code	Returns the number of valid bytes	current addres s	Check code 1 ow	Check code high		
0x01	0x03	0x02	0x00 0x01	0x**	0x**		

4.4.7 read device baud rate

Query frame (hexadecimal):

address code	function code	initial address	Data length	Check code low	Check code high
0x01	0x03	0x01 0x01	0x00 0x01	0x**	0x**

Response frame (hexadecimal): For example, the baud rate is 4800 ((01 means 1200, 01 means

address code	function code	Returns the number of valid bytes	current baud rate	Check code 1 ow	Check code high
0x01	0x03	0x02	0x00 0x01	0x**	0x**

2400, 02 means 4800, 03 means 9600, 04 means 14400, ,05 means 19200,)

4.4.8 Read humidity calibration value

address code	function code	initial address	Data length	Check cod	le low	Check code high
0x01	0x03	0x01 0x03	0x00 0x01	0x**		0x**
address code	function code	Returns the number of valid bytes	Humidity Calibration value	Check code low	Cheo	ck code high
0x01	0x03	0x02	0x00 0x01	0x**		0x**

Query frame (hexadecimal):

4.4.9 Read temperature calibration value

address code	function code	initial address	Data length	Check code low	Check code high		
0x01	0x03	0x01 0x04	0x00 0x01	0x**	0x**		
address code	function code	Returns the number of valid bytes	temperature calibration value	Check code low	Check code high		
0x01	0x03	0x02	0x00 0x01	0x**	0x**		

Query frame (hexadecimal):

Common problems and solutions

No output or output error

possible reason:

- (1). The computer has a COM port, and the selected port is incorrect.
- ②, the baud rate is wrong.
- ③. The 485 bus is disconnected, or the A and B lines are reversed.
- (4). If the number of devices is too much or the wiring is too long, power supply should be provided nearby, add 485 booster, and increase 120Ω terminal resistance at the same time.
- **⑤**. The USB to 485 driver is not installed or damaged.
- (6), equipment damage.